Skip to main content
Log in

Variational properties of the Gauss–Bonnet curvatures

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The Gauss–Bonnet curvature of order 2k is a generalization to higher dimensions of the Gauss–Bonnet integrand in dimension 2k, as the scalar curvature generalizes the two dimensional Gauss–Bonnet integrand. In this paper, we evaluate the first variation of the integrals of these curvatures seen as functionals on the space of all Riemannian metrics on the manifold under consideration. An important property of this derivative is that it depends only on the curvature tensor and not on its covariant derivatives. We show that the critical points of this functional once restricted to metrics with unit volume are generalized Einstein metrics and once restricted to a pointwise conformal class of metrics are metrics with constant Gauss–Bonnet curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger M. (1970). Quelques formules de variation pour une structure riemannienne. Ann. Sci. Econ. Norm. Sup. 3(4): 285–294

    MATH  Google Scholar 

  2. Besse A.L. (1987). Einstein Manifolds. Springer, Heidelberg

    MATH  Google Scholar 

  3. Guan P., Wang G. (2003). A fully nonlinear conformal flow on locally conformally flat manifolds. J. Reine Angew. Math. 557: 219–238

    MATH  MathSciNet  Google Scholar 

  4. Gursky M., Viaclovsky J. (2007). Prescribing symmetric functions of the eigenvalues of the Ricci tensor Ann. Math. 166: 475–531

    MATH  MathSciNet  Google Scholar 

  5. Kulkarni R.S. (1972). On Bianchi identities. Math. Ann. 199: 175–204

    Article  MATH  MathSciNet  Google Scholar 

  6. Labbi M.L. (2005). Double forms, curvature structures and the (p, q)-curvatures. Trans. Am. Math. Soc. 357(10): 3971–3992

    Article  MATH  MathSciNet  Google Scholar 

  7. Labbi M.L. (2006). On compact manifolds with positive second Gauss–Bonnet curvature. Pac. J. Math. 227(2): 295–310

    Article  MATH  MathSciNet  Google Scholar 

  8. Li A., Li Y.Y. (2003). On some conformally invariant fully nonlinear equations. Commun. Pure Appl. Math. 56: 1416–1464

    Article  MATH  Google Scholar 

  9. Lovelock D. (1971). The Einstein tensor and its generalizations. J. Math. Phys. 12(3): 498–501

    Article  MATH  MathSciNet  Google Scholar 

  10. Sheng, W., Trudinger, N.S., Wang, X.-J.: The Yamabe problem for higher order curvatures. J. Differ. Geom. (2007, in press)

  11. Weyl H. (1939). On the volume of tubes. Am. J. Math. 61: 461–472

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-L. Labbi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labbi, ML. Variational properties of the Gauss–Bonnet curvatures. Calc. Var. 32, 175–189 (2008). https://doi.org/10.1007/s00526-007-0135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0135-4

Mathematics Subject Classification (2000)

Navigation