Skip to main content
Log in

Regularity of minimizers of W1,p-quasiconvex variational integrals with (p,q)-growth

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider autonomous integrals

$$F[u]:=\int_\Omega f(Du)dx \quad{\rm for}\,\,u:{\mathbb{R}}^{n}\supset\Omega\to{\mathbb{R}}^{N} $$

in the multidimensional calculus of variations, where the integrand f is a strictly W 1,p-quasiconvex C 2-function satisfying the (p,q)-growth conditions

$$ \gamma |A|^p\,\le\,f(A) \le \Gamma(1+|A|^q)\quad {\rm for \quad every}\,A \in \mathbb{R}^{nN}$$

with exponents 1 < p ≤  q < ∞. Under these assumptions we establish an existence result for minimizers of F in \(W^{1,p}(\Omega;{\mathbb{R}}^N)\) provided \(q\quad < \quad\frac{np}{n-1}\) . We prove a corresponding partial C 1,α-regularity theorem for \(q < p +\frac{{\rm min}\{2,p\}}{2n}\) . This is the first regularity result for autonomous quasiconvex integrals with (p,q)-growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E. and Fusco N. (1984). Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86: 125–145

    Article  MATH  MathSciNet  Google Scholar 

  2. Acerbi E. and Fusco N. (1987). A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99: 261–281

    Article  MATH  MathSciNet  Google Scholar 

  3. Acerbi E. and Fusco N. (1989). Regularity for minimizers of non-quadratic functionals: the case 1 < p < 2. Math. Anal. Appl. 140: 115–135

    Article  MATH  MathSciNet  Google Scholar 

  4. Acerbi E. and Mingione G. (2001). Regularity results for a class of quasiconvex functionals with nonstandard growth. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV. Ser. 30: 311–339

    MATH  MathSciNet  Google Scholar 

  5. Acerbi E. and Mingione G. (2002). Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164: 213–259

    Article  MATH  MathSciNet  Google Scholar 

  6. Ball J.M. (1982). Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. A 306: 557–611

    Article  MATH  Google Scholar 

  7. Ball J.M. and Murat F. (1984). W 1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58: 225–253

    Article  MATH  MathSciNet  Google Scholar 

  8. Bildhauer M. and Fuchs M. (2001). Partial regularity for variational integrals with (s,μ,q)-growth. Calc. Var. Partial Differ. Equ. 13: 537–560

    Article  MATH  MathSciNet  Google Scholar 

  9. Carozza M., Fusco N. and Mingione G. (1998). Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura Appl., IV. Ser. 175: 141–164

    Article  MATH  MathSciNet  Google Scholar 

  10. Duzaar F., Grotowski J.F. and Kronz M. (2005). Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Ann. Mat. Pura Appl., IV. Ser. 184: 421–448

    Article  MATH  MathSciNet  Google Scholar 

  11. Duzaar, F., Grotowski, J. F., Steffen, K.: Optimal regularity results via A-harmonic approximation. In: Stefan Hildebrandt et al., Geometric analysis and nonlinear partial differential equations. Springer, Berlin (2003)

  12. Duzaar F. and Steffen K. (2002). Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals. J. Reine Angew. Math. 546: 73–138

    MATH  MathSciNet  Google Scholar 

  13. Evans L.C. (1986). Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95: 227–252

    Article  MATH  Google Scholar 

  14. Fonseca I. and Malý J. (1997). Relaxation of multiple integrals below the growth exponent. Ann. Inst. Henri Poincaré, Analyse Non Linéaire 14: 309–338

    Article  MATH  Google Scholar 

  15. Giaquinta M. (1983). Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton

    MATH  Google Scholar 

  16. Giusti E. (2003). Direct Methods in the Calculus of Variations. World Scientific Publishing, New York

    MATH  Google Scholar 

  17. Kristensen J. (1997). Lower semicontinuity in sobolev spaces below the growth exponent of the integrand. Proc. R. Soc. Edinb. Sect. A Math. 127: 797–817

    MATH  MathSciNet  Google Scholar 

  18. Marcellini P. (1985). Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manus. Math. 51: 1–28

    Article  MATH  MathSciNet  Google Scholar 

  19. Marcellini P. (1986). On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3: 391–409

    MATH  MathSciNet  Google Scholar 

  20. Morrey C.B. (1952). Quasiconvexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2: 25–53

    MATH  MathSciNet  Google Scholar 

  21. Passarelli di Napoli A. and Siepe F. (1996). A regularity result for a class of anisotropic systems. Rend. Ist. Mat. Univ. Trieste 28: 13–31

    MATH  MathSciNet  Google Scholar 

  22. Schmidt, T.: Zur Existenz und Regularität von Minimierern quasikonvexer Variationsintegrale mit (p,q)-Wachstum. Inaugural-Dissertation, Heinrich-Heine Universität Düsseldorf, Mathematisch- Naturwissenschaftliche Fakultät (2006)

  23. Schmidt, T.: Regularity of relaxed minimizers of quasiconvex variational integrals with (p,q)-growth (submitted 2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, T. Regularity of minimizers of W1,p-quasiconvex variational integrals with (p,q)-growth. Calc. Var. 32, 1–24 (2008). https://doi.org/10.1007/s00526-007-0126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0126-5

Mathematics Subject Classification (2000)

Navigation