Skip to main content
Log in

On the isoperimetric problem in Euclidean space with density

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the isoperimetric problem for Euclidean space endowed with a continuous density. In dimension one, we characterize isoperimetric regions for a unimodal density. In higher dimensions, we prove existence results and we derive stability conditions, which lead to the conjecture that for a radial log-convex density, balls about the origin are isoperimetric regions. Finally, we prove this conjecture and the uniqueness of minimizers for the density exp\((|x|^2)\) by using symmetrization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry D., Émery M. (1985). Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84. Lecture Notes Math. 1123: 177–206

    Article  Google Scholar 

  2. Bakry D., Ledoux M. (1996). Lévy–Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator. Invent. Math. 123(2): 259–281

    Article  MATH  MathSciNet  Google Scholar 

  3. Lucas Barbosa J., do Carmo M. (1984). Stability of hypersurfaces with constant mean curvature. Math. Z. 185(3): 339–353

    Article  MATH  MathSciNet  Google Scholar 

  4. Barthe F. (2002). Log-concave and spherical models in isoperimetry. Geom. Funct. Anal. 12(1): 32–55

    Article  MATH  MathSciNet  Google Scholar 

  5. Barthe F., Maurey B. (2000). Some remarks on isoperimetry of Gaussian type. Ann. Inst. H. Poincaré Probab. Stat. 36(4): 419–434

    Article  MATH  MathSciNet  Google Scholar 

  6. Bayle, V.: Propriétés de concavité du profil isopérimétrique et applications. Thèse de Doctorat (2003)

  7. Bieberbach L. (1915). Ub̈er eine Extremaleigenschaft des Kreises. J.-ber. Deutsch. Math.-Verein. 24: 247–250

    Google Scholar 

  8. Bobkov S. (1996). Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24: 35–48

    Article  MATH  MathSciNet  Google Scholar 

  9. Bobkov S. (1997). An isoperimetric inequality on the discrete cube and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probab. 25(1): 206–214

    Article  MATH  MathSciNet  Google Scholar 

  10. Bobkov, S., Houdré, C.: Some connections between isoperimetric and Sobolev-type inequalities. Mem. Amer. Math. Soc. 129 (1997)

  11. Borell C. (1975). The Brunn-Minkoski inequality in Gauss space. Invent. Math. 30(2): 207–216

    Article  MATH  MathSciNet  Google Scholar 

  12. Borell, C.: The Ornstein–Uhlenbeck velocity process in backward time and isoperimetry. Chalmers University of Technology 1986-03/ISSN 0347-2809 (preprint)

  13. Borell, C.: Intrinsic bounds for some real-valued stationary random functions. Lecture Notes in Math. 1153, 72–95, Springer, Berlin, (1985)

  14. Borell, C.: Analytic and empirical evidences of isoperimetric processes. Probability in Banach spaces 6 (Sandbjerg, 1986), 13–40, Progr. Probab., 20, Birkhäuser Boston, Boston (1990)

  15. Carlen E.A., Kerce C. (2001). On the cases of equality in Bobkov’s inequality and Gaussian rearrangement. Calc. Var. 13: 1–18

    Article  MATH  MathSciNet  Google Scholar 

  16. Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics, vol. 115, Academic, Orlando, (1984)

  17. Chavel, I.: Isoperimetric Inequalities. Differential Geometric and Analytic Perspectives. Cambridge Tracts in Mathematics, no. 145, Cambridge University Press, Cambridge (2001)

  18. Ehrhard A. (1982). Symétrisation dans l’espace de Gauss. Math. Scand. 53: 281–301

    MathSciNet  Google Scholar 

  19. Ehrhard A. (1986). Éléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes. Ann. Inst. H. Poincaré Probab. Stat. 22(2): 149–168

    MATH  MathSciNet  Google Scholar 

  20. Gromov M. (2003). Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13: 178–215

    Article  MATH  MathSciNet  Google Scholar 

  21. Hsiang W.Y. (1988). A symmetry theorem on isoperimetric regions. PAM-409, UC Berkeley

    Google Scholar 

  22. Morgan F. (1994). Clusters minimizing area plus length of singular curves. Math. Ann. 299: 697–714

    Article  MATH  MathSciNet  Google Scholar 

  23. Morgan F. (2000). Geometric measure theory: a beginner’s guide 3rd ed. Academic, San Diego

    MATH  Google Scholar 

  24. Morgan F. (2003). Regularity of isoperimetric hypersurfaces in Riemannian manifolds. Trans. Am. Math. Soc. 355(12): 5041–5052

    Article  MATH  Google Scholar 

  25. Morgan F. (2005). Manifolds with density. Notices Am. Math. Soc. 52: 853–858

    MATH  Google Scholar 

  26. Ritoré M., Rosales C. (2004). Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones. Trans. Am. Math. Soc. 356(11): 4601–4622

    Article  MATH  Google Scholar 

  27. Ros, A.: The isoperimetric problem. Global Theory of Minimal Surfaces. In: Hoffman D Proceedings of Clay Mathematics Institute 2001 Summer School, MSRI. Amer. Math. Soc. 175–209 (2005)

  28. Rosenberg H. (1993). Hypersurfaces of constant curvature in space forms. Bull. Sci. Math. 117: 211–239

    MATH  MathSciNet  Google Scholar 

  29. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University Centre for Mathematical Analysis, Canberra (1983)

  30. Sudakov, V.N., Tsirel’son, B.S.: Extremal properties of half-spaces for spherically invariant measures. J. Soviet Math. 9–18 (1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Rosales.

Additional information

First and second authors are partially supported by MCyT-Feder research project MTM2004-01387, fourth author by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosales, C., Cañete, A., Bayle, V. et al. On the isoperimetric problem in Euclidean space with density. Calc. Var. 31, 27–46 (2008). https://doi.org/10.1007/s00526-007-0104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0104-y

Keywords

Mathematics Subject Classification (2000)

Navigation