Skip to main content
Log in

Modeling daily dissolved oxygen concentration using modified response surface method and artificial neural network: a comparative study

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In the present study, two nonlinear mathematical modeling approaches, namely modified response surface method (MRSM) and multilayer perceptron neural network (MLPNN) were developed and compared for modeling daily dissolved oxygen (DO) concentration. The DO concentration and water quality variables data for several years, available from four stations operated by the United States Geological Survey, were used for developing the two models. The water quality data selected consisted of daily measured river discharge, water pH, specific conductance, water turbidity, and DO. The response surface methodology is modified based on the two steps for calibrating process. In the first regression step, the normalized input data were calibrated based on a linear function and then transferred by an inverse power function. In the second regression step, the input data from first step were used to calibrate a highly nonlinear third-order polynomial function. The accuracy of the proposed nonlinear MRSM is compared with the standard MLPNN using several error statistics such as root-mean-square error, mean absolute error, mean bias error, the coefficient of correlation, the Nash–Sutcliffe efficiency, and the Willmott index of agreement. The results obtained indicate that MRSM model performed best in comparison with the MLPNN for the all four stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bayram A, Kankal M (2015) Artificial neural network modeling of dissolved oxygen concentration in a turkish watershed. Pol J Environ Stud 24(4):1507–1515

    Google Scholar 

  2. Bayram A et al (2015) Modeling stream dissolved oxygen concentration using teaching-learning based optimization algorithm. Environ Earth Sci 73(10):6565–6576. doi:10.1007/s12665-014-3876-3

    Article  Google Scholar 

  3. Schmid B, Koskiaho J (2006) artificial neural network modeling of dissolved oxygen in a wetland pond: the case of Hovi, Finland. ASCE J Hydrol Eng 11(2):188–192. doi:10.1061/(ASCE)-0699(2006)11:2(188)

    Article  Google Scholar 

  4. Wen X et al (2013) Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China. Environ Monit Assess 185:4361–4371. doi:10.1007/s10661-012-2874-8

    Article  Google Scholar 

  5. Akkoyunlu A et al (2011) Depth-integrated estimation of dissolved oxygen in a lake. ASCE J Environ Eng 137(10):961–967. doi:10.1061/(ASCE)EE.1943-7870.0000376

    Article  Google Scholar 

  6. Heddam S (2016) Simultaneous modelling and forecasting of hourly dissolved oxygen concentration (DO) using radial basis function neural network (RBFNN) based approach: a case study from the Klamath River, Oregon, USA. Model Earth Syst Environ 2:135. doi:10.1007/s40808-016-0197-4

    Article  Google Scholar 

  7. Antanasijević D et al (2013) Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study. Environ Sci Pollut Res 20:9006–9013. doi:10.1007/s11356-013-1876-6

    Article  Google Scholar 

  8. Heddam S (2014) Generalized regression neural network (GRNN) based approach for modelling hourly dissolved oxygen concentration in the upper Klamath River, Oregon, USA. Environ Technol 35(13):1650–1657. doi:10.1080/09593330.2013.878396

    Article  Google Scholar 

  9. Heddam S (2016) New modelling strategy based on radial basis function neural network (RBFNN) for predicting dissolved oxygen concentration using the components of the Gregorian calendar as inputs: case study of Clackamas River, Oregon, USA. Model Earth Syst Environ 2:167. doi:10.1007/s40808-016-0232-5

    Article  Google Scholar 

  10. Ranković V et al (2012) Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system. J Hydro Inform 14(1):167–179. doi:10.2166/hydro.2011.084

    Article  Google Scholar 

  11. Heddam S (2014) Modelling hourly dissolved oxygen concentration (DO) using two different adaptive Neurofuzzy inference systems (ANFIS): a comparative study. Environ Monit Assess 186:597–619. doi:10.1007/s10661-013-3402-1

    Article  Google Scholar 

  12. Nemati S et al (2015) Estimation of dissolved oxygen using data-driven techniques in the Tai Po River, Hong Kong. Environ Earth Sci 74:4065–4073. doi:10.1007/s12665-015-4450-3

    Article  Google Scholar 

  13. Kisi O et al (2013) Modeling of dissolved oxygen in river water using artificial intelligence techniques. J Environ Inform 22(2):92–101. doi:10.3808/jei.201300248

    Article  Google Scholar 

  14. Heddam S (2014) Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS) based approach: case study of Klamath River at Miller Island Boat Ramp, Oregon, USA. Environ Sci Pollut Res 21:9212–9227. doi:10.1007/s11356-014-2842-7

    Article  Google Scholar 

  15. Olyaie E et al (2016) A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River. Geosci Front. doi:10.1016/j.gsf.2016.04.007

    Article  Google Scholar 

  16. Heddam S (2016) Fuzzy neural network (EFuNN) for modelling dissolved oxygen concentration (DO). In: Kahraman C, Sari IU(eds) Intelligence systems in environmental management: theory and applications. Intelligent Systems Reference Library, vol 113. doi:10.1007/978-3-319-42993-9_11

    Google Scholar 

  17. Liu et al (2013) Prediction of dissolved oxygen content in river crab culture based on least squares support vector regression optimized by improved particle swarm optimization. Comput Electron Agric 95:82–91. doi:10.1016/j.compag.2013.03.009

    Article  Google Scholar 

  18. Liu et al (2013) A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction. Math Comput Model 58:458–465. doi:10.1016/j.mcm.2011.11.021

    Article  Google Scholar 

  19. Heddam S (2016) Use of optimally pruned extreme learning machine (OP-ELM) in forecasting dissolved oxygen concentration (DO) Several hours in advance: a case study from the Klamath River, Oregon, USA. Environ Process. doi:10.1007/s40710-016-0172-0

    Article  Google Scholar 

  20. Evrendilek F, Karakaya N (2014) Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks. Environ Monit Assess 186:1583–1591. doi:10.1007/s10661-013-3476-9

    Article  Google Scholar 

  21. Evrendilek F, Karakaya N (2014) Regression model-based predictions of diel, diurnal and nocturnal dissolved oxygen dynamics after wavelet denoising of noisy time series. Phys A 404:8–15. doi:10.1016/j.physa.2014.02.062

    Article  Google Scholar 

  22. Evrendilek F, Karakaya N (2015) Spatiotemporal modeling of saturated dissolved oxygen through regressions after wavelet denoising of remotely and proximally sensed data. Earth Sci Inform 8:247–254. doi:10.1007/s12145-014-0148-4

    Article  Google Scholar 

  23. Ravansalar M et al (2016) Prediction of dissolved oxygen in River Calder by noise elimination time series using wavelet transforms. J Exp Theor Artif Intell 28(4):689–706. doi:10.1080/0952813X.2015.1042531

    Article  Google Scholar 

  24. Khani S, Rajaee T (2016) Modelling of dissolved oxygen concentration and its hysteresis behavior in rivers using wavelet transform-based hybrid models. CLEAN—Soil–Air Water. doi:10.1002/clen.201500395

    Article  Google Scholar 

  25. Box GEP, Wilson K B (1951) On the experimental attainment of optimum conditions. J R Stat Soc Ser B 13(1):1–45. www.jstor.org/stable/2983966

  26. Edwards IM, Jutan A (1997) Optimization and control using response surface methods. Comput Chem Eng 21(4):441–453. doi:10.1016/S0098-1354(96)00007-5

    Article  Google Scholar 

  27. Keshtegar B et al (2016) Optimized river stream flow forecasting model utilizing high-order response surface method. Water Resour Manag 30(11):3899–3914. doi:10.1007/s11269-016-1397-4

    Article  Google Scholar 

  28. Gavin HP, Yau SC (2008) High-order limit state functions in the response surface method for structural reliability analysis. Struct Saf 30:162–179. doi:10.1016/j.strusafe.2006.10.003

    Article  Google Scholar 

  29. Jiang SH et al (2014) Capabilities of stochastic response surface method and response surface method in reliability analysis. Struct Eng Mech 49(1):111–128. doi:10.12989/sem.2014.49.1.111

    Article  MathSciNet  Google Scholar 

  30. Kaymaz I, McMahon CA (2005) A response surface method based on weighted regression for structural reliability analysis. Probab Eng Mech 20:11–17. doi:10.1016/j.probengmech.2004.05.005

    Article  Google Scholar 

  31. Kang SC et al (2010) An efficient response surface method using moving least squares approximation for structural reliability analysis. Probab Eng Mech 25:365–371. doi:10.1016/j.probengmech.2010.04.002

    Article  Google Scholar 

  32. Xiong F et al (2012) A double weighted stochastic response surface method for reliability analysis. J Mech Sci Technol 26(8):2573–2580. doi:10.1007/s12206-012-0425-4

    Article  Google Scholar 

  33. Li C et al (2002) Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J Biotechnol 93(1):27–34. doi:10.1016/S0168-1656(01)00377-7

    Article  Google Scholar 

  34. Ghafari S et al (2009) Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J Hazard Mater 163(2):650–656. doi:10.1016/j.jhazmat.2008.07.090

    Article  Google Scholar 

  35. Roux WJ et al (1998) Response surface approximations for structural optimization. Int J Numer Meth Eng 42(3):517–534. doi:10.1002/(SICI)1097-0207(19980615)42:3<517:AID-NME370>3.0.CO;2-L

    Article  MATH  Google Scholar 

  36. Avalle M et al (2002) Design optimization by response surface methodology: application to crashworthiness design of vehicle structures. Struct Multidiscip Optim 24(4):325–332. doi:10.1007/s00158-002-0243-x

    Article  Google Scholar 

  37. Naceur H et al (2008) Response surface methodology for the rapid design of aluminum sheet metal forming parameters. Mater Des 29(4):781–790. doi:10.1016/j.matdes.2007.01.018

    Article  Google Scholar 

  38. Hykin SS (1999) Neural networks: a comprehensive foundation. Printice-Hall Inc., New Jersey

    Google Scholar 

  39. Wieland R, Mirschel W (2008) Adaptive fuzzy modeling versus artificial neural networks. Environ Model Softw 23:215–224. doi:10.1016/j.envsoft.2007.06.004

    Article  Google Scholar 

  40. Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2):251–257. doi:10.1016/0893-6080(91)90009-T

    Article  Google Scholar 

  41. Hornik K et al (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366. doi:10.1016/0893-6080(89)90020-8

    Article  MATH  Google Scholar 

  42. Keshtegar B et al (2016) A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Comput Electron Agric 127:120–130. doi:10.1016/j.compag.2016.05.018

    Article  Google Scholar 

  43. Daren Harmel R, Smith PK (2007) Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling. J Hydrol 337:326–336. doi:10.1016/j.jhydrol.2007.01.043

    Article  Google Scholar 

  44. Chen WB, Liu WC (2015) Water quality modeling in reservoirs using multivariate linear regression and two neural network models. Adv Artif Neural Syst, Article ID 521721. doi:10.1155/2015/521721

    Article  Google Scholar 

  45. Csábrági A et al (2017) Application of artificial neural networks to the forecasting of dissolved oxygen content in the Hungarian section of the river Danube. Ecol Eng 100:63–72. doi:10.1016/j.ecoleng.2016.12.027

    Article  Google Scholar 

  46. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csake F (eds) Second international symposium on information theory. Akademiai Kaido, Budapest, pp 267–281

    Google Scholar 

  47. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  MathSciNet  Google Scholar 

  48. Dawson CW et al (2007) HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ Model Softw 22:1034–1052. doi:10.1016/j.envsoft.2006.06.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Heddam.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshtegar, B., Heddam, S. Modeling daily dissolved oxygen concentration using modified response surface method and artificial neural network: a comparative study. Neural Comput & Applic 30, 2995–3006 (2018). https://doi.org/10.1007/s00521-017-2917-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2917-8

Keywords

Navigation