Skip to main content
Log in

Applications of non-integer Caputo time fractional derivatives to natural convection flow subject to arbitrary velocity and Newtonian heating

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Unsteady time fractional natural convection flow of incompressible viscous fluid due to arbitrary velocity with radiation and Newtonian heating is investigated. By introducing dimensionless variables and functions, the resulting equations are solved by the Laplace transform technique. Exact solutions for temperature and velocity fields are obtained by Caputo time fractional derivatives in dimensionless form, and they are expressed in terms of Robotnov–Hartley function and Wright’s function. The rate of heat transfer on plate is obtained in terms of Nusselt number. Some known solutions from the existing literature are obtained as limiting case when \(\alpha = 1\). At the end, we have seen the significant influence of fractional parameter \(\alpha\) on the temperature and velocity graphically and observed that it has shown an opposite behavior on temperature and velocity for small and large values of time t, respectively. This shows that how fractional parameter \(\alpha\) affects the fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(c_{p}\) :

Specific heat at constant pressure

\(g\) :

Gravitational acceleration

\(Gr\) :

Grashof number

\(k\) :

Thermal conductivity

\(Pr\) :

Prandtl number

\(s\) :

Laplace transform parameter

\(T\) :

Fluid temperature

\(T_{\text{w}}\) :

Wall temperature

\(T_{\infty }\) :

Temperature far away from the plate

\(\mu\) :

Dynamic viscosity

\(\nu\) :

Kinematic viscosity

\(\theta\) :

Non-dimensional temperature

\(N_{r}\) :

Radiation parameter

\(Pr_{\text{eff}}\) :

Effective Prandtl number

\(\alpha\) :

Fractional parameter

References

  1. Merkin JH (1994) Natural convection boundary layer flow on a vertical surface with Newtonian heating. Int J Heat Fluid Flow 15:392–398

    Article  Google Scholar 

  2. Narahari M et al (2012) Newtonian heating and mass transfer on free convection flow past an accelerated plate in the presence of thermal radiation. AIP Conf Proc 1482:340–346

    Article  Google Scholar 

  3. Hussnan A et al (2014) Natural convection flow past an oscillating plate with Newtonian heating. Heat Transf Res 45:119–135

    Article  Google Scholar 

  4. Hussnan A et al (2014) Unsteady boundary layer MHD free convection flow in a porous medium with constant mass diffusion and Newtonian heating. Eur Phys J Plus 129(3):1–16

    Google Scholar 

  5. Narahari M, Dutta BK (2012) Effect of thermal radiation and mass diffusion on free convection flow near a vertical plate with Newtonian heating. Chem Eng Commun 199:628–643

    Article  Google Scholar 

  6. Ramzan M et al (2013) MHD three-dimensional flow of couple stress fluid with Newtonian heating. Eur Phys J Plus 128(5):1–15

    Article  Google Scholar 

  7. Abid H, Khan I, Salleh MZ, Sharidan S (2014) Slip effects on unsteady free convective heat and mass transfer flow with Newtonian heating. Therm Sci 142–162

  8. Salleh MZ, Nazar R, Pop I (2010) Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating. J Taiwan Inst Chem Eng 41:651–655

    Article  Google Scholar 

  9. Salleh MZ, Nazar R, Arifin NM, Pop I (2011) Forced convection heat transfer over a circular cylinder with Newtonian heating. J Eng Math 69:101–110

    Article  MathSciNet  MATH  Google Scholar 

  10. Kasim ARM, Mohammad NF, Aurangzaib SS (2012) Natural convection boundary layer flow of a viscoelastic fluid on solid sphere with Newtonian heating. World Acad Sci Eng Technol 64:628–633

    Google Scholar 

  11. Das S, Mandal C, Jana RN (2012) Radiation effects on unsteady free convection flow past a vertical plate with Newtonian heating. Int J Comput Appl 41:36–41

    Google Scholar 

  12. Narahari M, Ishak A (2011) Radiation effects on free convection flow near a moving vertical plate with Newtonian heating. J Appl Sci 11:1096–1104

    Article  Google Scholar 

  13. Zeeshan A, Majeed A, Ellahi R (2016) Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. J Mol Liq 215:549–554

    Article  Google Scholar 

  14. Ambreen AK, Saima M, Ellahi R, Zia QMZ (2016) Bionic study of variable viscosity on MHD peristaltic flow of Pseudoplastic fluid in an asymmetric channel. J Magn 21(2):273–280

    Article  Google Scholar 

  15. Bhatti MM, Zeeshan A, Ellahi R (2016) Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: clot blood model. Comput Methods Programs Biomed 137:115–124

    Article  Google Scholar 

  16. Nawaz M, Zeeshan A, Ellahi R, Abbasbandy S, Rashidi S (2015) Joules heating effects on stagnation point flow over a stretching cylinder by means of genetic algorithm and Nelder-Mead method. Int J Numer Methods Heat Fluid Flow 25(3):665–684

    Article  MATH  Google Scholar 

  17. Mamourian M, Shiryan KM, Ellahi R, Rahimi AB (2016) Optimization of mixed convection heat transfer with entropy generation in a wavy surface square Lid-Driven cavity by means of Taguchi approach. Int J Heat Mass Transf 120:544–554

    Article  Google Scholar 

  18. Shiryan KM, Mamourian M, Mirzakhanlari S, Ellahi R (2016) Two phase simulation and sensitivity analysis of effective parameters on combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by RSM. J Mol Liq 220:888–901

    Article  Google Scholar 

  19. Ellahi R, Shivanian E, Abbasbandy S, Hayat T (2016) Numerical study of magnetohydrodynamics generalized Couette flow of Eyring-Powell fluid with heat transfer and slip condition. Int J Numer Methods Heat Fluid Flow 26(5):1433–1445

    Article  MathSciNet  MATH  Google Scholar 

  20. Ul Haq R, Khan ZH, Khan WA, Shah IA (2016) Viscous dissipation effects in water driven carbon nanotubes along a stream wise and cross flow direction. Int J Chem Reactor Eng. doi:10.1515/ijcre-2016-0059

    Google Scholar 

  21. Haq Ul R, Khan ZH, Husaain ST, Hammouch Z (2016) Flow and heat transfer analysis of water and ethylene glycol based cu nanoparticles between two parallel disks with suction/injection effects. J Mol Liq 221:298–304

    Article  Google Scholar 

  22. Noor NF, Haq Ul R, Abbasbandy S, Hasim I (2016) Heat flux performance in a porous medium embedded Maxwell fluid over a vertically stretched plate due to heat absorption. J Nonlinear Sci Appl J Nonlinear Sci Appl 9:2986–3001

    Article  MathSciNet  MATH  Google Scholar 

  23. Hatano Y (2013) Determination of order in fractional diffusion equation. J Math Ind 5(A-7):51–57

    MathSciNet  MATH  Google Scholar 

  24. Deka RK, Das SK (2011) Radiation effects on free convection flow near a vertical plate with ramped wall temperature. Engineering 3:1197–1206

    Article  Google Scholar 

  25. Magyari E, Pantokratoras A (2011) Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int Commun Heat Mass Transf 38(5):554–556

    Article  Google Scholar 

  26. Podlubny I (1999) Fractional differential equations. New York Academic Press, Cambridge

    MATH  Google Scholar 

  27. Bagley RL (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27:201–210

    Article  MATH  Google Scholar 

  28. Narahari M, Dutta BK (2012) Effects of thermal radiation and mass diffusion on free convection flow near a vertical plate with Newtonian heating. Chem Eng Commun 199(5):628–643

    Article  Google Scholar 

  29. Vieru D, Fetecau C, Fetecau C, Nigar N (2014) Magnetohydrodynamic natural convection flow with Newtonian heating and mass diffusion over an infinite plate that applies shear stress to viscous fluid. Z Naturforschi A 69:714–724

    Google Scholar 

  30. Fetecau C, Vieru D, Fetecau C, Pop I (2015) Slip effect on the unsteady radiative MHD free convective flow over a moving plate with mass diffusion and heat source. Eur Phys J Plus 30(6):1–13

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank reviewers for careful assessment and pertinent observations. The authors would also acknowledge the University of Management and Technology, Lahore, Pakistan, for the financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Khan.

Appendix

Appendix

$$L^{ - 1} \left\{ {\frac{{e^{{ - as^{b} }} }}{{s^{c} }}} \right\} = t^{c - 1} \varPhi (c, - b;\; - at^{ - b} );\quad 0 < b < 1\quad {\text{where}}\quad \varPhi (x,y;z) = \sum\limits_{n = 0}^{\infty } {\frac{{z^{n} }}{\varGamma (n + 1)\varGamma (x - ny)}}$$
(28)
$$L^{ - 1} \left\{ {\frac{1}{{s^{\mu } }}} \right\} = F_{\mu } (t) = \sum\limits_{n = 0}^{\infty } {\frac{{a^{n} t^{(n + 1)\mu - 1} }}{\varGamma [(n + 1)\mu ]};\quad \mu > 0}$$
(29)
$$L^{ - 1} \left\{ {\frac{{s^{a - b} }}{{s^{a} + c}}} \right\} = t^{b - 1} E_{a,\,b} (ct^{a} );\quad E_{a,\,b} (ct^{a} ) = \sum\limits_{k = 0}^{\infty } {\frac{{z^{k} }}{\varGamma (ak + b)};\quad a,b > 0}$$
(30)
$$\begin{aligned} \psi (a,b,t) = L^{ - 1} \left\{ {\frac{{e^{ - a\sqrt s } }}{{s^{2} \left( {\sqrt s + b} \right)}}} \right\} = \frac{1}{b}\left( {t + \frac{{a^{2} }}{2} + \frac{a}{b} + \frac{1}{{b^{2} }}} \right)\;{\text{erfc}}\left( {\frac{a}{2\sqrt t }} \right) - \frac{(2 + ab)\sqrt t }{{b^{2} \sqrt \pi }}e^{{ - \frac{{a^{2} }}{4t}}} - \hfill \\ \quad - \frac{1}{{b^{3} }}e^{{(ab + b^{2} t)}} \;{\text{erfc}}\left( {\frac{a}{2\sqrt t } + b\sqrt t } \right) \hfill \\ \end{aligned}$$
(31)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, M.A., Shah, N.A., Khan, I. et al. Applications of non-integer Caputo time fractional derivatives to natural convection flow subject to arbitrary velocity and Newtonian heating. Neural Comput & Applic 30, 1589–1599 (2018). https://doi.org/10.1007/s00521-016-2741-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2741-6

Keywords

Navigation