Skip to main content
Log in

Image classification using local linear regression

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In the past several decades, classifier design has attracted much attention. Inspired by the locality preserving idea of manifold learning, here we give a local linear regression (LLR) classifier. The proposed classifier consists of three steps: first, search k nearest neighbors of a pointed sample from each special class, respectively; second, reconstruct the pointed sample using the k nearest neighbors from each special class, respectively; and third, classify the test sample according to the minimum reconstruction error. The experimental results on the ETH80 database, the CENPAMI handwritten number database and the FERET face image database demonstrate that LLR works well, leading to promising image classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. Informatica 31:249–268

    MATH  MathSciNet  Google Scholar 

  2. Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    Article  MATH  Google Scholar 

  3. Yu K, Ji L, Zhang X (2002) Kernel nearest-neighbor algorithm. Neural Process Lett 15:147–156

    Article  MATH  Google Scholar 

  4. Li SZ, Lu J (1999) Face recognition using the nearest feature line method. IEEE Trans Neural Netw 10(2):439–443

    Article  Google Scholar 

  5. Zheng W, Zhao L, Zou C (2004) Locally nearest neighbour classifiers for pattern recognition. Pattern Recognit 37(6):1307–1309

    Article  MATH  Google Scholar 

  6. Lou Z, Jin Z (2006) Novel adaptive nearest neighbour classifiers based on hit-distance. In: Proceedings of the 18th international conference on pattern recognition (ICPR2006), vol. 3, pp. 87–90

  7. Gao Q, Wang Z (2007) Center-based nearest neighbor classifier. Pattern Recognit 40(1):346–349

    Article  MATH  Google Scholar 

  8. Shen F, Hasegawa O (2008) A fast nearest neighbor classifier based on self-organizing incremental neural network. Neural Netw 21(10):1537–1547

    Article  MATH  Google Scholar 

  9. Mitani Y, Hamamoto Y (2006) A local mean-based nonparametric classifier. Pattern Recognit Lett 27(10):1151–1159

    Article  Google Scholar 

  10. Zhang C, Zhang J (2008) RotBoost: a technique for combining Rotation Forest and AdaBoost. Pattern Recognit Lett 29(10):1524–1536

    Article  Google Scholar 

  11. Zhou A, Zhu Z, Fan H (2012) A new semi-supervised PSVM classifier. Appl Math Comput 219(8):883–889

    MathSciNet  Google Scholar 

  12. Ben X, Meng W, Yan R, Wang K (2013) Kernel coupled distance metric learning for gait recognition and face recognition. Neurocomputing 2013(120):577–589

    Article  Google Scholar 

  13. Yang J, Wright J, Huang T, Ma Y (2008) Image super-resolution as sparse representation of raw patches. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR 2008)

  14. Rao S, Tron R, Vidal R, Ma Y (2008) Motion segmentation via robust subspace separation in the presence of outlying, incomplete, and corrupted trajectories. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR 2008)

  15. Mairal J, Sapiro G, Elad M (2008) Learning multiscale sparse representations for image and video restoration. SIAM MMS 7(1):214–241

    Article  MATH  MathSciNet  Google Scholar 

  16. Wright J, Yang A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  17. Wright J, Ma Y, Mairial J, Sapiro G, Huang T, Yan S (2010) Sparse representation for computer vision and pattern recognition. In Proceedings of IEEE, special issue on applications of compressive sensing & sparse representation, 98(6): 1031–1044

  18. Rigamonti R, Brown MA, Lepetit V (2011) Are sparse representations really relevant for image classification? In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR2011)

  19. Shi Q, Erisson A, van den Hengel A, Shen C (2011) Is face recognition really a compressive sensing problem? In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR 2011)

  20. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition. In Proceedings of IEEE conference on computer vision (ICCV2011)

  21. Yang W, Wang Z, Yin J, Sun C, Ricanek K (2013) Image classification using Kernel collaborative representation with regularized least square. Appl Math Comput 222(13–28):2013

    MathSciNet  Google Scholar 

  22. Xu Y, Zhang D, Yang J, Yang J-Y (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262

    Article  Google Scholar 

  23. Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43(1):331–341

    Article  MATH  Google Scholar 

  24. Lai Z, Xu Y, Yang J, Zhang D (2013) Sparse tensor discriminant analysis. IEEE Trans Image Process 22(10):3904–3915

    Article  MathSciNet  Google Scholar 

  25. Lai Z, Wong WK, Jin Z, Yang J, Xu Y (2012) Sparse approximation to the eigensubspace for discrimination. IEEE Trans Neural Netw Learn Syst 23(12):1948–1960

    Article  Google Scholar 

  26. Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112

    Article  Google Scholar 

  27. Chai X, Shan S, Chen X, Gao W (2007) Locally linear regression for pose invariant face recognition. IEEE Trans Image Process 16(7):1716–1725

    Article  MathSciNet  Google Scholar 

  28. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning; data mining, inference and prediction. Springer, New York

    MATH  Google Scholar 

  29. Nearest neighbor search, http://en.wikipedia.org/wiki/nearest_neighbor_search

  30. Leibe B, Schiele B (2003) Analyzing appearance and contour based methods for object categorization. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR 2003)

  31. Leibe B. The ETH-80 Image Set. Available from: http://www.mis.informatik.tu-darmstadt.de/research/projects/categorization/eth80-db.html

  32. Yang J, Zhang L, Yang J, Zhang D (2011) From classifiers to discriminators: a nearest neighbor rule induced discriminant analysis. Pattern Recognit 44(7):1387–1402

    Article  MATH  Google Scholar 

  33. Liao SX, Pawlark M (1996) On image analysis by moments. IEEE Trans Pattern Anal Mach Intell 18(3):254–266

    Article  Google Scholar 

  34. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Article  Google Scholar 

  35. Phillips PJ (2004) The facial recognition technology (FERET) database: http://www.itl.nist.gov/iad/humanid/feret/feret_master.html

Download references

Acknowledgments

This project is partly supported by NSF of China (61375001, 61273023), partly supported by the open fund of Key Laboratory of Measurement and partly supported by Control of Complex Systems of Engineering, Ministry of Education (No. MCCSE2013B01) and the Jiangsu Key Laboratory of Image and Video Understanding for Social Safety (Nanjing University of Science and Technology) (No. 30920130122006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wankou Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Ricanek, K. & Shen, F. Image classification using local linear regression. Neural Comput & Applic 25, 1913–1920 (2014). https://doi.org/10.1007/s00521-014-1681-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1681-2

Keywords

Navigation