Skip to main content
Log in

The analysis of discrete artificial bee colony algorithm with neighborhood operator on traveling salesman problem

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The artificial bee colony (ABC) algorithm, inspired intelligent behaviors of real honey bee colonies, was introduced by Karaboğa for numerical function optimization. The basic ABC has high performance and accuracy, if the solution space of the problem is continuous. But when the solution space of the problem is discrete, the basic ABC algorithm should be modified to solve this class optimization problem. In this study, we focused on analysis of discrete ABC with neighborhood operator for well-known traveling salesman problem and different discrete neighborhood operators are replaced with solution updating equations of the basic ABC. Experimental computations show that the promising results are obtained by the discrete version of the basic ABC and which neighborhood operator is better than the others. Also, the results obtained by discrete ABC were enriched with 2- and 3-opt heuristic approaches in order to increase quality of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University

  2. Zhong W-L, Zhang J, Chen W-N (2007) A novel discrete particle swarm optimization to solve traveling salesman problem. In: Proceedings of the IEEE congress on evolutionary computation, pp 3283–3287

  3. Ma J, Yang T, Hou Z-G, Tan M, Liu D (2008) Neurodynamic programming: a case study of the travelling salesman problem. Neural Comput Appl 17:347–355

    Article  Google Scholar 

  4. Uğur A, Aydın D (2009) An interactive simulation and analysis software for solving TSP using ant colony optimization algorithms. Adv Eng Softw 40:341–349

    Article  MATH  Google Scholar 

  5. Langevin A, Soumis F, Desrosiers J (1990) Classification of travelling salesman problem formulations. Oper Res Lett 9(2):127–132

    Article  MathSciNet  MATH  Google Scholar 

  6. Laporte G (1992) The traveling salesman problem: an overview of exact and approximate algorithms. Eur J Oper Res 59(2):231–247

    Article  MATH  Google Scholar 

  7. Punnen AP (1990) Travelling salesman problem under categorization. Oper Res Lett 12(2):89–95

    Article  MathSciNet  Google Scholar 

  8. Bektaş T (2006) The multiple traveling salesman problems: an overview of formulations and solution procedures. Omega 34(3):209–219

    Article  Google Scholar 

  9. Rego C, Gamboa D, Glover F, Osterman C (2011) Traveling salesman problem heuristics: leading methods, implementations and latest advances. Eur J Oper Res 211(3):427–441

    Article  MathSciNet  MATH  Google Scholar 

  10. Applegate DL, Bixby RE, Chvatal V, Cook WJ (2007) The traveling salesman problem: a computational study. Princeton series in applied mathematics. Princeton University Press, Princeton. ISBN:978-0-691-12993-8

  11. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697

    Article  Google Scholar 

  12. Akay B (2009) Performance analysis of artificial bee colony algorithm on numerical optimization problems. PhD thesis in Turkish, Erciyes University, Graduate School of Natural and Applied Sciences, Kayseri, pp 70–72

  13. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471

    Article  MathSciNet  MATH  Google Scholar 

  14. Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital IIR filters. J Frankl Inst 346:328–348

    Article  MathSciNet  MATH  Google Scholar 

  15. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214:108–132

    Article  MathSciNet  MATH  Google Scholar 

  16. Tsai P-W, Pan J-S, Liao B-Y, Chu S-C (2009) Enhanced artificial bee colony optimization. Int J Innov Comput Inf Control 5-12B:5081–5092

    Google Scholar 

  17. Singh A (2009) An artificial bee colony algorithm for the leaf constrained minimum spanning tree problem. Appl Soft Comput 9:625–631

    Article  Google Scholar 

  18. Alatas B (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl 37:5682–5687

    Article  Google Scholar 

  19. Zhu G, Kwong S (2010) Gbes-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217:3166–3173

    Article  MathSciNet  MATH  Google Scholar 

  20. Akay B, Karaboga D (2010) A modified artificial bee colony algorithm for real parameter optimization. Inf Sci. doi:10.1016/j.ins.2010.07.015

  21. Zhang C, Ouyang D, Ning J (2010) An artificial bee colony approach for clustering. Expert Syst Appl 37:4761–4767

    Article  Google Scholar 

  22. Sabat SL, Udgata SK, Abraham A (2010) Artificial bee colony algorithm for small signal model parameter extraction of MESFET. Eng Appl Artif Intell 23:689–694

    Article  Google Scholar 

  23. Xu C, Duan H, Liu F (2010) Chaotic artificial bee colony approach to uninhabited combat air vehicle (UCAV) path planning. Aerosp Sci Technol 14:535–541

    Article  Google Scholar 

  24. Gao W-F, Liu S-Y (2012) A modified artificial bee colony algorithm. Comput Oper Res 39:687–697

    Article  MATH  Google Scholar 

  25. Barnharnsakun A, Achalakul T, Sirinaovakul B (2011) The best-so-far selection in artificial bee colony algorithm. Appl Soft Comput 11:2888–2901

    Article  Google Scholar 

  26. Kang F, Lie J, Ma Z (2011) Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Inf Sci 181:3508–3531

    Article  MATH  Google Scholar 

  27. Karaboga D, Akay B (2011) A modified artificial bee colony (ABC) algorithm for constrained optimization problems. Appl Soft Comput 11:3021–3031

    Article  Google Scholar 

  28. Karaboga D, Ozturk C (2011) A novel clustering approach: artificial bee colony (ABC) algorithm. Appl Soft Comput 11:652–657

    Article  Google Scholar 

  29. Tasgetiren MF, Pan Q-K, Suganthan PN, Chen AH-L (2011) A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops. Inf Sci 181:3459–3475

    Article  MathSciNet  Google Scholar 

  30. Pan Q-K, Tasgetiren MF, Suganthan PN, Chua TJ (2011) A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf Sci 181:2455–2468

    Article  MathSciNet  Google Scholar 

  31. Horng M-H (2011) Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Syst Appl 38:13785–13791

    Google Scholar 

  32. Ma M, Lieang J, Guo M, Fan Y, Yin Y (2011) SAR image segmentation based on artificial bee colony algorithm. Appl Soft Comput 11:5205–5214

    Article  Google Scholar 

  33. Omkar SN, Senthilnath J, Khandelwal R, Naik GN, Gopalakrishman S (2011) Artificial bee colony (ABC) for multi-objective design optimization of composite structures. Appl Soft Comput 11:489–499

    Article  Google Scholar 

  34. Manoj VJ, Elias E (2011) Artificial bee colony algorithm for the design of multiplier-less nonuniform filter bank transmultiplexer. Inf Sci. doi:10.1016/j.ins.2011.02.023

  35. De Oliveira IMS, Schirru R (2011) Swarm intelligence of artificial bees applied to in-core fuel management optimization. Ann Energy 38:1039–1045

    Article  Google Scholar 

  36. Samanta S, Chakraborty S (2011) Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Eng Appl Artif Intell 22:946–957

    Article  Google Scholar 

  37. Yeh W-C, Hsieh T-J (2011) Solving reliability redundancy allocation problems using an artificial bee colony algorithm. Comput Oper Res 38:1465–1473

    Article  MathSciNet  Google Scholar 

  38. Sonmez M (2011) Artficial bee colony algorithm for optimization of truss structures. Appl Soft Comput 11:2406–2418

    Article  Google Scholar 

  39. Gozde H, Taplamacioglu MC (2011) Comparative performance analysis of artificial bee colony algorithms for automatic voltage regulator (AVR) systems. J Frankl Inst 348:1927–1946

    Article  MATH  Google Scholar 

  40. Szeto WY, Wu Y, Ho SC (2011) An artificial bee colony algorithm for the capacitated vehicle routing problem. Eur J Oper Res 215:126–135

    Article  Google Scholar 

  41. Barnharnsakun A, Achalakul T, Sirinaovakul B (2010) ABC-GSX: a hybrid method for solving the travelling salesman problem. In: Proceedings of the second world congress on nature and biologically inspired computing, pp 7–12

  42. Karaboga D, Gorkemli B (2011) A combinatorial artificial bee colony algorithm for traveling salesman problem. In: Proceedings of the international symposium on innovations in intelligent systems and applications, pp 50–53

  43. Zhang X, Bai Q, Yun X (2011) A new hybrid artificial bee colony algorithm for the travelling salesman problem. In: Proceedings of the IEEE 3rd international conference on communication software and networks, pp 155–159

  44. Liu X, Su J, Han Y (2007) An improved particle swarm optimization for traveling salesman problem. Lect Notes Comput Sci 4682:803–812

    Article  Google Scholar 

  45. Wang KP, Huang L, Zhou CG, Pang W (2003) Particle swarm optimization for traveling salesman problem. Int Conf Mach Learn Cybern 3:1583–1585

    Google Scholar 

  46. Irnich S, Funke B, Grünert T (2006) Sequential search and its application to vehicle-routing problems. Comput Oper Res 33:2405–2429

    Article  MATH  Google Scholar 

  47. Sha DY, Hsu C-Y (2006) A hybrid particle swarm optimization for job shop scheduling problem. Comput Ind Eng 51:791–808

    Article  Google Scholar 

  48. Reinelt G (1991) TSPLIB—a traveling salesman problem library. ORSA J Comput 3(4):376–384

    Article  MATH  Google Scholar 

  49. Oliver IM, Smith DJ, Holland JRC (1987) A study of permutation crossover operators on the traveling salesman problem. In: Proceedings of the second international conference on genetic algorithms on genetic algorithms and their application, pp 224–230

Download references

Acknowledgments

The authors thank anonymous reviewers for their valuable comments and contributions and “Selcuk University Scientific Research Project Coordinatorship” and “The Scientific and Technological Research Council of Turkey” for their institutional supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Servet Kıran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kıran, M.S., İşcan, H. & Gündüz, M. The analysis of discrete artificial bee colony algorithm with neighborhood operator on traveling salesman problem. Neural Comput & Applic 23, 9–21 (2013). https://doi.org/10.1007/s00521-011-0794-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0794-0

Keywords

Navigation