Skip to main content

Advertisement

Log in

Determination of induction motor parameters with differential evolution algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this study, the determination of equivalent circuit parameters of induction motors is carried out with differential evolution algorithm (DEA) and genetic algorithm (GA). As an objective function in the algorithms, the sum torque error at zero speed, pull-out, and rated speed is used. The determination of equivalent circuit parameters is performed with three induction motors of 2.2, 5.5, and 37 kW. In particular, the search ability of DEA is compared with GA by using the same population size, number of iteration, and crossover rate. In addition, the effects of the obtained equivalent circuit parameters on induction motors characteristics are investigated and presented with graphics. The results show that the use of DEA instead of GA increases the convergence sensitivity and reduces the simulation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Murat İE (2002) Self commissioning and online parameter identification of induction motors, Ms Thesis, METU

  2. Arabacı H, Bilgin O (2010) Automatic detection and classification of rotor cage faults in squirrel cage induction motor. Neural Comput Applic 19:713–723

    Article  Google Scholar 

  3. Atkinson DJ, Acarnley PP, Finch JW (1991) Observers for induction motor state and parameter estimation. IEEE Trans Ind Appl 27(6):1119–1127

    Article  Google Scholar 

  4. Proca AB, Keyhani A (2002) Identification of variable frequency induction motor models from operating data. IEEE Trans Energy Conv 17(1):24–31

    Article  Google Scholar 

  5. Alonge F, D’Ippolito F, Raimondi FM (2001) Least squares and genetic algorithms for parameter identification of induction motors. Control Eng Pract 9(6):647–657

    Article  Google Scholar 

  6. Wishart MY, Harley RG (1995) Identification and control of induction machines using arificial neural networks. IEEE Trans Ind Appl 31(3):612–619

    Google Scholar 

  7. Ursem RK, Vadstrup P (2003) Parameter identification of induction motors using differential evolution. In: Proceedings of the fifth congress on evolutionary computation (CEC-2003). IEE Press, Piscataway, pp 790–796

  8. Kim JW, Kim SW (2005) Parameter identification of induction motors using dynamic encoding algorithm for searches (DEAS). IEEE Trans Energy Conv 20(1):16–24

    Article  Google Scholar 

  9. Benaidja N, Khenfer N (2006) Identification of asynchronous machine parameters by evolutionary techniques. Electric Power Components Syst 34:1359–1376

    Article  Google Scholar 

  10. Benaidja N (2009) Soft computing identification techniques of asynchronous machine parameters: evolutionary. Strategy and chemotaxis algorithm. Turk J Elec Eng Comp Sci 17(1):69–85

    Google Scholar 

  11. Çunkaş M, Sağ T, Arslan M (2009) Determination of induction motor parameters by differential evolution algorithm and genetic algorithms. The 2nd international conference on advanced computer theory and engineering (ICACTE 2009), Cairo, Egypt, 1, pp 777–784

  12. Mahdavi M, Jalilzadeh S (2009) Advanced particle swarm optimization for parameter identification of three-phase DFIM. IEEE international conference on intelligent computing and intelligent systems (ICIS 2009). Shanghai, China, pp 580–584

  13. Awadallah MA (2008) Parameter estimation of induction machines from nameplate data using particle swarm optimization and genetic algorithm techniques. Electric Power Components Syst 36(8):801–814

    Article  Google Scholar 

  14. Hsu LY, Tsai MC, Huang CC (2003) Efficiency optimization of brushless permanent magnet motors using penalty genetic algorithms. IEEE electric machines drives conference, IEMDC’03 (vol 1, pp 365–369)

  15. Çunkaş M (2010) Intelligent design of induction motors by multiobjective fuzzy genetic algorithm. J Intell Manuf 21:393–402

    Article  Google Scholar 

  16. Trebi-Ollennu A, White BA (1997) Multiobjective fuzzy genetic algorithm optimization approach to nonlinear control system design. IEE Proc Control Theory Appl 144:137–142

    Article  Google Scholar 

  17. Bingul Z, Sekmen S, Palaniappan S, Sabatto S (2000) Genetic algorithms applied to real time multiobjective optimization problems. In: Proceedings of the IEEE southeast congress conference

  18. Im CH, Jung HK, Kim YJ (2003) Hybrid genetic algorithm for electromagnetic topology optimization. IEEE Trans Magnet 39(5):2163–2169

    Article  Google Scholar 

  19. Hwang SF, He RS (2006) Improving real-parameter genetic algorithm with simulated annealing for engineering problems. Adv Eng Softw 37(6):406–418

    Google Scholar 

  20. Storn R, Price K (1995) Differential evolution- a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, Berkley

  21. Storn R, Price K (1997) Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  22. Das S, Abraham A, Konar A (2008) Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives. Advances of computational intelligence in industrial systems, In: Ying Liu et al. (eds) Studies in computational intelligence. Springer, Germany

  23. Khazraee SM, Jahanmiri AH, Ghorayshi SA (2010) Model reduction and optimization of reactive batch distillation based on the adaptive neuro-fuzzy inference system and differential evolution. Neural Comput Applic 20(2):239–248

    Article  Google Scholar 

  24. http://www.icsi.berkeley.edu/~storn/code.html, last access 29 Mar 2010

  25. IEEE Power Engineering Society. IEEE standard test procedure for poly-phase induction motors and generators. IEEE Std 112–1996, September 19, 1996

  26. Pillay P, Nolan R, Haque T (1997) Application of genetic algorithms to motor parameter determination for transient torque calculations. IEEE Trans Ind Appl 33(5):1273–1282

    Article  Google Scholar 

  27. Weatherford HH, Brice CW (2003) Estimation of induction motor parameters by a Genetic Algorithm. Pulp and Paper Industry Technical Conference, pp 21–28

  28. Price KV, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach global optimization. Springer, Garmany

    MATH  Google Scholar 

  29. Arslan M (2010) Determination of asynchronous motor parameters by differential evolution algorithm. Ms Thesis, Selçuk University, Konya

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Çunkaş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arslan, M., Çunkaş, M. & Sağ, T. Determination of induction motor parameters with differential evolution algorithm. Neural Comput & Applic 21, 1995–2004 (2012). https://doi.org/10.1007/s00521-011-0612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0612-8

Keywords

Navigation