Skip to main content
Log in

A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper presents a new fuzzy bee colony optimization method to find the optimal distribution of the membership functions in the design of fuzzy controllers for complex nonlinear plants. We used interval type-2 and type-1 fuzzy logic systems in dynamically adapting the alpha and beta parameter values of the bee colony optimization algorithm (BCO). Simulation results with a type-1 fuzzy logic controller for benchmark control plants are presented. The advantage of using interval type-2 fuzzy logic systems for dynamic adjustment of parameters in BCO applied in fuzzy controller design is verified with two benchmark problems. We considered different levels and types of noise in the simulations to analyze the approach of interval type-2 fuzzy logic systems to find the best values of alpha and beta for BCO when applied in the design of fuzzy controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  • Amador-Angulo L, Castillo O (2013a) Comparison of fuzzy controllers for the water tank with type-1 and type-2 fuzzy logic. In: NAFIPS 2013, Edmonton, Canada, pp 1–6

  • Amador-Angulo L, Castillo O (2013b) Comparison of the optimal design of fuzzy controllers for the water tank using ant colony optimization. In: Recent advances on hybrid approaches for designing intelligent systems, vol 547, Tijuana, B.C., pp 255–273

  • Amador-Angulo L, Castillo O (2015) A new algorithm based in the smart behavior of the bees for the design of Mamdani-style fuzzy controllers using complex non-linear plants. In: Design of intelligent systems based on fuzzy logic, neural network and nature-inspired, optimization, pp 617–637

  • Arabshahi P, Choi JJ, Marks RJ II, Caudell TP (1996) Fuzzy parameter adaptation in optimization: some neural net training examples. Comput Sci Eng 1:57–65

    Article  Google Scholar 

  • Astudillo L, Castillo O, Aguilar L (2007) Intelligent control for a perturbed autonomous wheeled mobile robot: a type-2 fuzzy logic approach. Nonlinear Stud 14(1):37–48

  • Aung N, Cooper E, Hoshino Y, Kamei K (2007) A proposal of fuzzy control systems for trailers driven by multiple motors in side slipways to haul out ships. Int J Innov Comput Inf Control 3(4):799–812

    Google Scholar 

  • Bel A, Wagner C, Hagras H (2013) Multiobjective optimization and comparison of nonsingleton type-1 and singleton interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 21(3):459–476

    Article  Google Scholar 

  • Biesmeijer JC, Seeley TD (2005) The use of waggle dance information by honey bees throughout their foraging careers. Behav Ecol Sociobiol 59(1):133–142

    Article  Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (1997) Swarm intelligence. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Castillo O (2012) Interval type-2 Mamdani fuzzy systems for intelligent control, combining experimentation and theory. Springer, Berlin

    Google Scholar 

  • Castillo O, Melin P (2008) Type-2 fuzzy logic theory and applications. Springer, Berlin

    MATH  Google Scholar 

  • Castillo O, Melin P (2012) A review on the design and optimization of interval type-2 fuzzy controllers. Appl Soft Comput (ASC) 12:1267–1278

    Article  Google Scholar 

  • Castillo O, Martinez R, Melin P (2010) Bio-inspired optimization of fuzzy logic controllers for robotic autonomous system with PSO and ACO. In: Fuzzy information engineering, pp 119–143

  • Castillo O, Martinez-Marroquin R, Melin P, Valdez F, Soria J (2012) Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Inf Sci 192:19–38

    Article  Google Scholar 

  • Castro JR, Castillo O, Melin P (2007) “An interval type-2 fuzzy logic toolbox for control applications. In: Fuzzy system conference, pp 1–6

  • Cázarez-Castro N, Aguilar LT, Castillo O (2012) Designing type-1 and type-2 fuzzy logic controllers via fuzzy Lyapunov synthesis for nonsmooth mechanical systems. Eng Appl Artif Intell 25:971–979

    Article  Google Scholar 

  • Cervantes L, Castillo O, Melin P (2011) Intelligent control of nonlinear dynamic plants using a hierarchical modular approach and type-2 fuzzy logic. In: MICAI, pp 1–12

  • Chaiyatham T, Ngamroo I (2012) A bee colony optimization based-fuzzy logic-PID control design of electrolyzer for microgrid stabilization. Int J Innov Comput Inf Control 8(9):6049–6066

    Google Scholar 

  • Chang WJ, Hsu FL (2015) Mamdani and Takagi-Sugeno fuzzy controller design for ship fin stabilizing systems. In: Fuzzy systems and knowledge discovery (FSKD), 2015 12th international conference on, pp 345–350. IEEE

  • Chatterjee A, Siarry P (2006) Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput Oper Res 33(3):859–871

    Article  MATH  Google Scholar 

  • Chen S, Chang Y, Pan J (2013) Fuzzy rules interpolation for sparse fuzzy rule-based systems based on interval type-2 gaussian fuzzy sets and genetic algorithms. IEEE Trans Fuzzy Syst 21(3):412–425

    Article  Google Scholar 

  • Chong Ch, Low M, Sivakumar AK, Gay (2006) A bee colony optimization algorithm to job shop scheduling. In: Proceedings of the 2006 winter simulation conference, pp 1959

  • Dyler FC (2002) The biology of the dance language. Annu Rev Entomol 47:917–949

    Article  Google Scholar 

  • Hagras HA (2007) Type-2 FLC: a new generalization of fuzzy controllers. In: IEEE computational intelligence magazine, February, pp 30–43

  • Hsu C, Juang C (2013) Evolutionary robot wall-following control using type-2 fuzzy controller with species-de-activated continuous aco. IEEE Trans Fuzzy Syst 21(1):100–112

    Article  Google Scholar 

  • Juang CF, Lu CM, Lo C, Wang CY (2008) Ant colony optimization algorithm for fuzzy controller design and its fpga implementation. Ind Electron IEEE Trans 55(3):1453–1462

    Article  Google Scholar 

  • Karnik NN, Mendel JM (2001) Operations on type-2 fuzzy sets. Int J Fuzzy Sets Syst 122:327–348

    Article  MathSciNet  MATH  Google Scholar 

  • Karnik NN, Mendel JM, Liang Q (1999) Type-2 fuzzy logic system. IEEE Trans Fuzzy Syst 7(6):643–658

    Article  Google Scholar 

  • Kayacan E, Ramon H, Kaynakand O, Saey W (2015) Towards agrobots: trajectory control of an autonomous tractor using type-2 fuzzy logic controllers. Mechatron IEEE/ASME Trans 20(1):287–298

    Article  Google Scholar 

  • Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Practice Hall, New Jerey

    MATH  Google Scholar 

  • Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. Fuzzy Syst IEEE Trans 8(5):535–550

    Article  Google Scholar 

  • Lučić P, Teodorović D (2003b) Vehicle routing problem with uncertain demand at nodes: the bee system and fuzzy logic approach. In: Verdegay JL (ed) Fuzzy sets in optimization. Springer, Berlin, pp 67–82

    Google Scholar 

  • Mamdani EH (1974) Applications of fuzzy algorithms for simple dynamic plant. Proc IEEE 121(12):1585–1588

    Google Scholar 

  • Martinez R, Castillo O, Aguilar L (2009) Optimization of type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf Sci 179(13):2158–2174

    Article  MATH  Google Scholar 

  • Melendez A, Castillo O (2012) Optimization of type-2 fuzzy reactive controllers for an autonomous mobile robot. NaBIC 2012:207–211

    Google Scholar 

  • Melin P, Olivas F, Castillo O, Valdez F, Soria J, Valdez M (2013) Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst Appl 40(8):1–12

    Google Scholar 

  • Mendel JM (2001) Uncertain rule-based fuzzy logic system: introduction and new directions. Practice Hall, New Jersey

    MATH  Google Scholar 

  • Mendel JM (2010) A quantitative comparison of interval type-2 and type1 fuzzy logic systems: first results. In: Proceedings of the IEEE international conference on fuzzy systems (FUZZ), pp 1–8

  • Mendel JM (2013) On KM algorithms for solving type-2 fuzzy set problems. IEEE Trans Fuzzy Syst 21(3):426–446

    Article  Google Scholar 

  • Mendel JM, John RIB (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10(2):117–127

    Article  Google Scholar 

  • Mendel JM, Hagras H, Tan W-W, Melek WW, Ying H (2014) Introduction to type-2 fuzzy logic control. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Mendel JM, Rajati MR, Sussner P (2016) On clarifying some definitions and notations used for type-2 fuzzy sets as well as some recommended changes. Inf Sci 340:337–345

    Article  MathSciNet  Google Scholar 

  • Mizumoto M, Tanaka K (1976) Some properties of fuzzy sets of Type-2. In: Information and control, pp 312–340

  • Ochoa P, Castillo O (2014) Differential evolution with dynamic adaptation of parameters of the optimization of fuzzy controller. In: Recent advance of hybrid approach for designing intelligent systems, pp 275–288

  • Pagola M, Lopez-Molina C, Fernandez J, Barrenechea E, Bustince H (2013) Interval type-2 fuzzy sets constructed from several membership functions: application to the fuzzy thresholding algorithm. IEEE Trans Fuzzy Syst 21(2):230–244

    Article  Google Scholar 

  • Sepúlveda R, Rodriguez A, Castillo O, Sepúlveda R (2007) Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Inf Sci 177(10):2023–22048

    Article  Google Scholar 

  • Shi Y, Eberhart RC (2001) Fuzzy adaptive particle swarm optimization. In: Evolutionary computation, 2001. Proceedings of the 2001 congress on, vol 1, pp 101–106. IEEE

  • Siliciano B, Sciavicco L, Villani L, Oriolo G (2010) Robotics: modelling, planning and control, pp 415–418

  • Teodorović D (2003) Transport modeling by multi-agent systems: a swarm intelligence approach. Transp Plan Technol 26(4):289–312

    Article  Google Scholar 

  • Teodorović D (2008) Swarm intelligence systems for transportation engineering: principles and applications. Transp Res Part C Emerg Technol 16(6):651–782

    Article  Google Scholar 

  • Tiacharoen S, Chatchanayuenyong T (2012) Design and development of an intelligent control by using bee colony optimization technique. Am J Appl Sci 9(9):1464–1471

    Article  Google Scholar 

  • Tong S, Zhang Q (2008) Robust stabilization of nonlinear time-delay interconnected systems via decentralized fuzzy control. Int J Innov Comput Inf Control 4(7):1567–1582

    Google Scholar 

  • Wang T, Tong S, Li Y (2009) Robust adaptive fuzzy control for nonlinear system with dynamic uncertainties based on backstepping. Int J Innov Comput Inf Control 5(9):2675–2688

    Google Scholar 

  • Wong LP, Chong ChS (2009) An efficient bee colony optimization algorithm for traveling salesman problem using frequency-based pruning. In: 7th international conference on industrial informatics (INDIN 2009), pp 775–782

  • Wong LP, Hean Low MY, Chong ChS (2008) Bee colony optimization with local search for traveling salesman problem. In: Proceedings of Second Asia International Conference on Modelling and Simulation, pp 818–823

  • Wu D (2013) Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons. IEEE Trans Fuzzy Syst 21(1):80–99

    Article  Google Scholar 

  • Ying H (2000) Fuzzy control and modeling: analytical foundations and applications. IEEE Press, Piscataway

    Book  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  • Zadeh LA (1975a) The concept of a lingüistic variable and its application to approximate reasoning. Part I. Inf Sci 8:199–249

    Article  MATH  Google Scholar 

  • Zadeh LA (1975b) The concept of a lingüistic variable and its application to approximate reasoning. Part II. Inf Sci 8:301–357

    Article  MATH  Google Scholar 

  • Zadeh LA (1997) Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, fuzzy sets and systems, vol 90. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Zhou H, Ying H (2013) A method for deriving the analytical structure of a broad class of typical interval type-2 Mamdani fuzzy controllers. IEEE Trans Fuzzy Syst 21(3):447–458

    Article  Google Scholar 

Download references

Acknowledgments

This research work did not receive funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo.

Ethics declarations

Conflict of interest

All the authors in the paper have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amador-Angulo, L., Castillo, O. A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers. Soft Comput 22, 571–594 (2018). https://doi.org/10.1007/s00500-016-2354-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2354-0

Keywords

Navigation