Skip to main content

Advertisement

Log in

Metric forests based on Gaussian mixture model for visual image classification

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Visual image classification plays an important role in computer vision and pattern recognition. In this paper, a new random forests method called metric forests is suggested. This method takes the distribution of datasets (including the original dataset and bootstrapped ones) into full consideration. The proposed method exploits the distribution similarity between the original dataset and the bootstrapped datasets. For each bootstrapped dataset, a metric decision tree is built based on Gaussian mixture model. The metric decision tree learned from bootstrapped dataset with a low or high similarity index is given small weight when voting, vice versa. The contribution of the proposed method is originated from that the dataset with low similarity may not represent the original dataset very well while the high one with a big chance to overfit. To evaluate the proposed metric forests method, extensive of experiments was conducted for visual image classification including texture image classification, flower image classification and food image classification. The experimental results validated the superiority of the proposed metric forests on the ALOT, Flower-102 and Food-101 datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bellet A, Habrard A (2015) Robustness and generalization for metric learning. Neurocomputing 151:259

    Article  Google Scholar 

  • Bengio Y (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1

    Article  MATH  Google Scholar 

  • Biau G, Devroye L, Lugosi G (2008) Consistency of random forests and other averaging classifiers. J Mach Learn Res 9:2015

    MathSciNet  MATH  Google Scholar 

  • Biau G (2012) Analysis of a random forests model. J Mach Learn Res 13(1):1063

    MathSciNet  MATH  Google Scholar 

  • Bishop CM et al (2006) Pattern recognition and machine learning. Springer, New York

    MATH  Google Scholar 

  • Booth A, Gerding E, McGroarty F (2014) Automated trading with performance weighted random forests and seasonality. Expert Syst Appl 41(8):3651

    Article  Google Scholar 

  • Bosch A, Zisserman A, Muoz X (2007) In: IEEE 11th international conference on computer vision, 2007 ICCV 2007 (IEEE, 2007), pp 1–8

  • Bossard L, Guillaumin M, Van Gool L (2014) In: Computer vision-ECCV. Springer, pp 446–461

  • Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123

    MATH  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5

    Article  MATH  Google Scholar 

  • Burghouts GJ, Geusebroek JM (2009) Material-specific adaptation of color invariant features. Pattern Recognit Lett 30(3):306

    Article  Google Scholar 

  • Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux JL (2015) Color image analysis by quaternion-type moments. J Math Imaging Vis 51(1):124

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Q, Song Z, Huang Z, Hua Y, Yan S (2015) Contextualizing object detection and classification. IEEE Trans Pattern Anal Mach Intell 37(1):13

    Article  Google Scholar 

  • Costa AF, Humpire-Mamani G, Traina AJM (2012) In: 25th SIBGRAPI conference on graphics, patterns and images (SIBGRAPI), 2012 (IEEE, 2012), pp 39–46

  • Dantone M, Gall J, Fanelli G, Van Gool L In: IEEE conference on computer vision and pattern recognition (CVPR), 2012 (IEEE, 2012), pp 2578–2585

  • Dapogny A, Bailly K, Dubuisson S (2015) In: IEEE international conference on computer vision (ICCV), 2015 (IEEE, 2015)

  • Davis JV, Kulis B, Jain P, Sra S, Dhillon IS (2007) In: Proceedings of the 24th international conference on Machine learning (ACM, 2007), pp 209–216

  • Denil M, Matheson D, De Freitas N (2014) In: Proceedings of The 31st international conference on machine learning, pp 665–673

  • Fanelli G, Dantone M, Gall J, Fossati A, Van Gool L (2013) Random forests for real time 3D face analysis. Int J Comput Vis 101(3):437

    Article  Google Scholar 

  • Fanelli G, Gall J, Van Gool L (2011) In: IEEE conference on computer vision and pattern recognition (CVPR), 2011 (IEEE, 2011), pp. 617–624

  • Fernando B, Fromont E, Tuytelaars T (2014) Mining mid-level features for image classification. Int J Comput Vis 108(3):186

    Article  MathSciNet  Google Scholar 

  • Gabrieli JD, Ghosh SS, Whitfield-Gabrieli S (2015) Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 85(1):11

    Article  Google Scholar 

  • Gislason PO, Benediktsson JA, Sveinsson JR (2006) Random forests for land cover classification. Pattern Recognit Lett 27(4):294

    Article  Google Scholar 

  • Guo L, Ma Y, Cukic B, Singh H (2004) In: 15th international symposium on software reliability engineering, 2004. ISSRE 2004 (IEEE, 2004), pp 417–428

  • Haasdonk B, Keysers D (2002) In: Proceedings of the 16th international conference on pattern recognition, 2002, vol 2 (IEEE, 2002), pp 864–868

  • Hastie T, Tibshirani R, Friedman J, Hastie T, Friedman J, Tibshirani R (2009) The elements of statistical learning, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hayat M, Bennamoun M, An S (2015) Deep reconstruction models for image set classification. IEEE Trans Pattern Anal Mach Intell 37(4):713

    Article  Google Scholar 

  • Hu W, Xie N, Hu R, Ling H, Chen Q, Yan S, Maybank S (2014) Bin ratio-based histogram distances and their application to image classification. IEEE Trans Pattern Anal Mach Intell 36(12):2338

    Article  Google Scholar 

  • Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9):850

    Article  Google Scholar 

  • Ibarra-Berastegi G, Saenz J, Esnaola G, Ezcurra A, Ulazia A (2015) Short-term forecasting of the wave energy flux: analogues, random forests, and physics-based models. Ocean Eng 104:530

    Article  Google Scholar 

  • Kontschieder P, Bulo SR, Bischof H, Pelillo M (2014) Structured class-labels in random forests for semantic image labelling. IEEE Trans Pattern Anal Mach Intell 36(10):2104

    Article  Google Scholar 

  • Kotsiantis S (2011) Combining bagging, boosting, rotation forest and random subspace methods. Artif Intell Rev 35(3):223

    Article  Google Scholar 

  • Lahouar A, Slama JBH (2015) Day-ahead load forecast using random forest and expert input selection. Energy Convers Manag 103:1040

    Article  Google Scholar 

  • Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507

    Article  Google Scholar 

  • Li P, Ling H, Li X, Liao C (2015) In: IEEE international conference on computer vision (ICCV), 2015 (IEEE, 2015), pp 819–827

  • Liu X, Song M, Tao D, Liu Z, Zhang L, Chen C, Bu J (2013) In: IEEE conference on computer vision and pattern recognition (CVPR), 2013 (IEEE, 2013), pp 492–499

  • Ludwig N, Feuerriegel S, Neumann D (2015) Putting big data analytics to work: feature selection for forecasting electricity prices using the LASSO and random forests. J Decis Syst 24:19–36

    Article  Google Scholar 

  • Ludwig N, Feuerriegel S, Neumann D (2015) Putting big data analytics to work: feature selection for forecasting electricity prices using the lasso and random forests. J Decis Syst 24(1):19

    Article  Google Scholar 

  • Marin J, Vázquez D, López AM, Amores J, Leibe B (2013) In: IEEE international conference on computer vision (ICCV), 2013 (IEEE, 2013), pp 2592–2599

  • Miao Y, Tao X, Sun Y, Li Y, Lu J (2015) Risk-based adaptive metric learning for nearest neighbour classification. Neurocomputing 156:33

    Article  Google Scholar 

  • Modolo D, Vezhnevets A, Ferrari V (2015) Context forest for efficient object detection with large mixture models. arXiv preprint arXiv:1503.00787

  • Nilsback ME, Zisserman A (2008) In: Sixth Indian conference on computer vision, graphics & image processing, 2008. ICVGIP’08 (IEEE, 2008), pp 722–729

  • Nock R, Bel Haj Ali W, D’Ambrosio R, Nielsen F, Barlaud M (2015) Gentle nearest neighbors boosting over proper scoring rules. IEEE Trans Pattern Anal Mach Intell 37(1):80

    Article  Google Scholar 

  • Ojala T, Pietikainen M, Harwood D (1994) In: Proceedings of the 12th IAPR international conference on pattern recognition, 1994, vol 1—conference a: computer vision & image processing, pp 582–585

  • Pang H, Lin A, Holford M, Enerson BE, Lu B, Lawton MP, Floyd E, Zhao H (2006) Pathway analysis using random forests classification and regression. Bioinformatics 22(16):2028

  • Qian Z, Xu Y (2016) Block-based selection random forest for texture classification using multi-fractal spectrum feature. Neural Comput Appl 27(3):593

    Article  Google Scholar 

  • Quan Y, Xu Y, Sun Y, Luo Y (2014) In: IEEE conference on computer vision and pattern recognition (CVPR), 2014 (IEEE, 2014), pp 160–167

  • Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) In: 2014 IEEE conference on computer vision and pattern recognition workshops (CVPRW) (IEEE, 2014), pp 512–519

  • Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33(1–2):1

    Article  Google Scholar 

  • Schulter S, Leistner C, Wohlhart P, Roth PM, Bischof H (2014): In: IEEE conference on computer vision and pattern recognition (CVPR), 2014 (IEEE, 2014), pp 923–930

  • Scornet E, Biau G, Vert JP (2014) Consistency of random forests. arXiv preprint arXiv:1405.2881

  • Seyedhosseini M, Tasdizen T (2015) Disjunctive normal random forests. Pattern Recognit 48(3):976

  • Shotton J, Sharp T, Kipman A, Fitzgibbon A, Finocchio M, Blake A, Cook M, Moore R (2013) Real-time human pose recognition in parts from single depth images. Commun ACM 56(1):116

    Article  Google Scholar 

  • Singh K, Guntuku SC, Thakur A, Hota C (2014) Big data analytics framework for peer-to-peer botnet detection using random forests. Inf Sci 278:488

    Article  Google Scholar 

  • Sonka M, Hlavac V, Boyle R (2014) Image processing, analysis, and machine vision. Cengage Learning, Boston

    Google Scholar 

  • Sun M, Kohli P, Shotton J (2012) In: IEEE conference on computer vision and pattern recognition (CVPR), 2012 (IEEE, 2012), pp 3394–3401

  • Trzcinski T, Christoudias M, Lepetit V (2015) Learning image descriptors with boosting. IEEE Trans Pattern Anal Mach Intell 37(3):597

    Article  Google Scholar 

  • Verma N, Mahajan D, Sellamanickam S, Nair V (2012) In: IEEE conference on computer vision and pattern recognition (CVPR), 2012 (IEEE, 2012), pp 2280–2287

  • Wang G, Zheng F, Shi C, Xue JH, Liu C, He L (2015) Embedding metric learning into set-based face recognition for video surveillance. Neurocomputing 151:1500

    Article  Google Scholar 

  • Williams JK (2014) Using random forests to diagnose aviation turbulence. Mach Learn 95(1):51

    Article  MathSciNet  Google Scholar 

  • Xia Z, Wang X, Sun X, Liu Q, Xiong N (2014a) Steganalysis of LSB matching using differences between nonadjacent pixels. Multimed Tools Appl 75:1–16

    Google Scholar 

  • Xia Z, Wang X, Sun X, Wang B (2014b) Steganalysis of least significant bit matching using multi-order differences. Secur Commun Netw 7(8):1283

    Article  Google Scholar 

  • Xu Y, Ji H, Fermüller C (2009) Viewpoint invariant texture description using fractal analysis. Int J Comput Vis 83(1):85

    Article  Google Scholar 

  • Yang H, Patras I (2013) In: 10th IEEE international conference and workshops on automatic face and gesture recognition (FG), 2013 (IEEE, 2013), pp 1–6

  • Zheng Y, Jeon B, Xu D, Wu Q, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):961

    Google Scholar 

  • Zhu JY, Wu J, Wei Y, Chang E, Tu Z (2015) Unsupervised object class discovery via saliency-guided multiple class learning. IEEE Trans Pattern Anal Mach Intell 37(4):862

    Article  Google Scholar 

Download references

Acknowledgments

Yong Xu would like to thank the supports by National Nature Science Foundations of China (61273255 and 61070091), Engineering and Technology Research Center of Guangdong Province for Big Data Analysis and Processing ([2013]1589-1-11), Project of High Level Talents in Higher Institution of Guangdong Province (2013-2050205-47) and Guangdong Technological Innovation Project (2013KJCX0010). Lin Wang would like to thank the support by National Statistical Science Research Project of China (No. 2014LY011). Qian Zhang would like to thank the support by Guizhou Province Science and Technology Project (QIAN KE HE J ZI[2014]2094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, Q. & Wang, L. Metric forests based on Gaussian mixture model for visual image classification. Soft Comput 22, 499–509 (2018). https://doi.org/10.1007/s00500-016-2350-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2350-4

Keywords

Navigation