Skip to main content

Advertisement

Log in

Hybridization of magnetic charge system search and particle swarm optimization for efficient data clustering using neighborhood search strategy

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Clustering is a popular data analysis technique, which is applied for partitioning of datasets. The aim of clustering is to arrange the data items into clusters based on the values of their attributes. Magnetic charge system search (MCSS) algorithm is a new meta-heuristic optimization algorithm inspired by the electromagnetic theory. It has been proved better than other meta-heuristics. This paper presents a new hybrid meta-heuristic algorithm by combining both MCSS and particle swarm optimization (PSO) algorithms, which is called MCSS–PSO, for partitional clustering problem. Moreover, a neighborhood search strategy is also incorporated in this algorithm to generate more promising solutions. The performance of the proposed MCSS–PSO algorithm is tested on several benchmark datasets and its performance is compared with already existing clustering algorithms such as K-means, PSO, genetic algorithm, ant colony optimization, charge system search, chaotic charge system search algorithm, and some PSO variants. From the experimental results, it can be seen that performance of the proposed algorithm is better than the other algorithms being compared and it can be effectively used for partitional clustering problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham A, Das S, Roy S (2007) Swarm intelligence algorithms for data clustering. In: Soft computing for knowledge discovery and data mining, part IV. Springer, Berlin, pp 79–313

  • Alpaydin E (2004) Introduction to machine learning. MIT Press, Cambridge

  • Anderberg MR (1973) Cluster analysis for application. Academic Press, New York

    Google Scholar 

  • Ankerst M, Breunig M, Kriegel HP, Sander J (1999) OPTICS: ordering points to identify the clustering structure. In: Proceedings of the 1999 ACM-SIGMOD international conference on management of data, Philadelphia, pp 49–60

  • Archer J, Robertson DL (2007) CTree: comparison of clusters between phylogenetic trees made easy. Bioinformatics 23(21):2952–2953

    Article  Google Scholar 

  • Ball G, Hall D (1967) A clustering technique for summarizing multivariate data. Behav Sci 12:153–155

    Article  Google Scholar 

  • Basu S, Davidson I, Wagstaff K (2008) Constrained clustering: advances in algorithms. In: Theory and applications, data mining and knowledge discovery. Chapman and Hall/CRC, London

  • Bezdek J (1981) Pattern recognition with fuzzy objective function algorithms. Advanced applications in pattern recognition. Plenum Press, New York

    Book  Google Scholar 

  • Bezdek JC, Boggavarapu S, Hall LO, Bensaid A (1994) Genetic algorithm guided clustering. In: IEEE World Congress on computational intelligence and evolutionary computation, pp 34–39

  • Bottou L, Vapnik V (1992) Local learning algorithms. Neural Comput 4(6):888–900

    Article  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MATH  MathSciNet  Google Scholar 

  • Carpenter GA, Grossberg S (1987) A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput Vis Graph Image Process 37:54–115

    Article  MATH  Google Scholar 

  • Celeux G, Govaert G (1995) Gaussian parsimonious clustering models. Pattern Recog 28(5):781–793

    Article  Google Scholar 

  • Cheeseman P, Stutz J (1996) Bayesian classification (AutoClass): theory and results. In: Fayyard UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R (eds) Advances in knowledge discovery and data mining. AAAI/MIT Press, Cambridge

    Google Scholar 

  • Chechik G, Globerson A, Tishby N, Weiss Y (2005) Information bottleneck for Gaussian variables. J Mach Learn Res 6:165–188

    MATH  MathSciNet  Google Scholar 

  • Chen S (1995) Nonlinear time series modelling and prediction using Gaussian RBF networks with enhanced clustering and RLS learning. Electron Lett 31(2):117–118

    Article  Google Scholar 

  • Chi SC, Yang CC (2006) Integration of ant colony SOM and k-means for clustering analysis. In: Knowledge-based intelligent information and engineering systems. Springer, Berlin, pp 1–8

  • Chen CY, Ye F (2004) Particle swarm optimization algorithm and its application to clustering analysis. In: IEEE international conference on networking, sensing and control, vol 2, pp 789–794

  • Dalli A (2003) Adaptation of the F-measure to cluster based lexicon quality evaluation. In: Proceedings of the EACL, pp 51–60

  • Das S, Abraham A, Konar A (2009) Meta-heuristic clustering. Springer, Berlin

  • Dawyndt P, De Meyer H, De Baets B (2006) UPGMA clustering revisited: a weight-driven approach to transitive approximation. Int J Approx Reason 42(3):174–191

    Article  MATH  Google Scholar 

  • Day WH, Edelsbrunner H (1984) Efficient algorithms for agglomerative hierarchical clustering methods. J Classif 1(1):7–24

    Article  MATH  Google Scholar 

  • Demiroz G, Guvenir A (1997) Classification by voting feature intervals. In: Proceedings of the seventh european conference on machine learning, pp 85–92

  • Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MATH  MathSciNet  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B: Cybern 26(1):29–41

  • Dunn WJ III, Greenberg MJ, Soledad SC (1976) Use of cluster analysis in the development of structure–activity relations for antitumor triazenes. J Med Chem 19(11):1299–1301

    Article  Google Scholar 

  • Erol OK, Eksin I (2006) A new optimization method: big bang-big crunch. Adv Eng Softw 37(2):106–111

    Article  Google Scholar 

  • Esmin AAA, Matwin S (2012) Data clustering using hybrid particle swarm optimization. In: Lecture notes in computer science, pp 159–166

  • Ester M, Kriegel HP, Sander J, Xu X (1996) A density based algorithm for discovering clusters in large spatial databases. In: Proceedings of the 1996 international conference on knowledge discovery and data mining (KDD’96), Portland, pp 226–231

  • Fraley C, Raftery AE (1999) MCLUST: software for model-based cluster analysis. J Classif 16(2):297–306

    Article  MATH  Google Scholar 

  • Guha S, Rastogi R, Shim K (1998) CURE: an efficient clustering algorithm for large databases. In: Proceedings of the ACM SIGMOD int. conf. management of data, pp 73–84

  • Guha S, Rastogi R, Shim K (2000) ROCK: a robust clustering algorithm for categorical attributes. Inf Syst 25(5):345–366

    Article  Google Scholar 

  • García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf Sci 180(10):2044–2064

    Article  Google Scholar 

  • Gao W, Liu SY, Huang LL (2013) A novel artificial bee colony algorithm with Powell’s method. Appl Soft Comput 13(9):3763–3775

    Article  Google Scholar 

  • Hartigan JA (1975) Clustering algorithms. Wiley, New York

    MATH  Google Scholar 

  • Handl J, Knowles J, Dorigo M (2003) On the performance of ant-based clustering. In: Design and application of hybrid intelligent system. Frontiers in artificial intelligence and applications, vol 104, pp 204–213

  • Hassoun MH (1995) Fundamentals of artificial neural networks. The MIT Press, Cambridge

  • Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    Article  MathSciNet  Google Scholar 

  • He Y, Pan W, Jizhen L (2006) Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data. Comput Stat Data Anal 51(2):641–658

    Article  MATH  Google Scholar 

  • Hruschka ER, Campello RJGB, Freitas AA, De Carvalho ACPLF (2009) A survey of evolutionary algorithms for clustering. IEEE Trans Syst Man Cybern Part C Appl Rev 39(2):133–155

  • Huang KY (2011) A hybrid particle swarm optimization approach for clustering and classification of datasets. Knowl Based Syst 24:420–426

    Article  Google Scholar 

  • Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recogn Lett 31:651–666

    Article  Google Scholar 

  • Jain AK, Dubes RC (1988) Algorithms clustering data. Prentice-Hall, Englewood cliffs

    MATH  Google Scholar 

  • Jensen F (1996) An introduction to bayesian networks. UCL Press/Springer, Berlin

  • Jiang H, Yi S, Li J, Yang F, Hu X (2010) Ant clustering algorithm with K-harmonic means clustering. Expert Syst Appl 37(12):8679–8684

    Article  Google Scholar 

  • Jiang H, Li J, Yi S, Wang X, Hu X (2011) A new hybrid method based on partitioning-based DBSCAN and ant clustering. Expert Syst Appl 38(8):9373–9381

    Article  Google Scholar 

  • Kao Y, Cheng K (2006) Ant colony optimization and swarm intelligence., An ACO-based clustering algorithm Springer, Berlin

  • Kao YT, Zahara E, Kao IW (2008) A hybridized approach to data clustering. Exp Syst Appl 34(3):1754–1762

    Article  Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Global Optim 39(3):459–471

    Article  MATH  MathSciNet  Google Scholar 

  • Karaboga D, Ozturk C (2011) A novel clustering approach: artificial bee colony (ABC) algorithm. Appl Soft Comput 11:652–657

    Article  Google Scholar 

  • Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

  • Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mechanica 213(3–4):267–289

    Article  MATH  Google Scholar 

  • Kaveh A, Laknejadi A (2011) A novel hybrid charge system search and particle swarm optimization method for multi-objective optimization. Exp Syst Appl 38:15475–15488

    Article  Google Scholar 

  • Kaveh A, Share AMAM, Moslehi M (2013) Magnetic charged system search: a new meta-heuristic algorithm for optimization. Acta Mechanica 224(1):85–107

    Article  MATH  Google Scholar 

  • Kaveh A, Mirzaeib B, Jafarvand A (2015) An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables. Appl Soft Comput 28:400–410

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceeding of IEEE international conference on neural networks (ICW), IV, pp 1942–1948

  • Kohonen T (1990) The self-organizing maps. Proc IEEE 78(9):1464–1480

    Article  Google Scholar 

  • Krishna K, Murty MN (1999) Genetic k-means algorithm. IEEE Trans Syst Man Cybern Part B Cybern 29(3):433–439

    Article  Google Scholar 

  • Kumar Y, Sahoo G (2014a) A charged system search approach for data clustering. Progress Artif Intell 2(2–3):53–166

  • Kumar Y, Sahoo G (2014b) A chaotic charged system search approach for data clustering. Informatica 38(3):149–61

  • Kumar Y, Sahoo G (2014c) A hybridize approach for data clustering based on cat swarm optimization. Int J Inf Commun Technol (in Press)

  • Kumar Y, Sahoo G (2015) An improved cat swarm optimization algorithm for clustering. Comput Intell Data Min 1:187–197

    Google Scholar 

  • Kuo RJ, Lin LM (2010) Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering. Dec Support Syst 49:451–462

  • Kuo RJ, Wang HS, Hu TL, Chou SH (2005) Application of ant K-means on clustering analysis. Comput Math Appl 50(10):1709–1724

    Article  MATH  MathSciNet  Google Scholar 

  • Lu Y, Lu S, Fotouhi F, Deng Y, Brown SJ (2004) FGKA: a fast genetic k-means clustering algorithm. In: Proceedings of the ACM symposium on applied computing, pp 622–623

  • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297

  • Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recognit 33(9):1455–1465

    Article  Google Scholar 

  • Maulik U, Mukhopadhyay A (2010) Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzing microarray data. Comput Oper Res 37(8):1369–1380

    Article  MATH  Google Scholar 

  • McLachlan G, Krishnan T (1997) The EM algorithm and extensions. Wiley, New York

    MATH  Google Scholar 

  • Milan S, Hlavac V, Boyle R (1998) Image processing, analysis, and machine vision, 4th edn. Chapman and Hall, London

  • Mullen Robert J, Monekosso Dorothy, Barman Sarah, Remagnino Paolo (2009) A review of ant algorithms. Exp Syst Appl 36(6):9608–9617

    Article  Google Scholar 

  • Murthy CA, Chowdhury N (1996) In search of optimal clusters using genetic algorithms. Pattern Recognit Lett 17(8):825–832

  • Niknam T, Amiri B (2010) An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl Soft Comput 10:183–197

    Article  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26(7):1641–1650

  • Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput-Aided Des 43(3):303–315

    Article  Google Scholar 

  • Sahoo AJ, Kumar Y (2014) Advances in signal processing and intelligent recognition systems., Modified teacher learning based optimization method for data clusteringSpringer, Berlin

    Google Scholar 

  • Santosa B, Ningrum MK (2009) Cat swarm optimization for clustering. In: International conference on soft computing and pattern recognition (SOCPAR’09), pp 54–59

  • Satapathy SC, Naik A (2011) Data clustering based on teaching-learning-based optimization. In: Swarm, evolutionary, and memetic computing. Springer, Berlin, pp 148–56

  • Sarafrazi S, Nezamabadi-pour H, Saryazdi S (2011) Disruption: a new operator in gravitational search algorithm. Scien-tia Iranica D 18(3):539–548

  • Selim SZ, Alsultan K (1991) A simulated annealing algorithm for the clustering problem. Pattern Recognit 24(10):1003–1008

    Article  MathSciNet  Google Scholar 

  • Shelokar PS, Jayaraman VK, Kulkarni BD (2004) An ant colony approach for clustering. Analytica Chimica Acta 509(2):187–95

    Article  Google Scholar 

  • Sinha AN, Das N, Sahoo G (2007) Ant colony based hybrid optimization for data clustering. Kybernetes 36(2):175–191

  • Sneath P (1957) The application of computers to taxonomy. J Gen Microbiol 17:201–226

    Article  Google Scholar 

  • Sokal R, Michener C (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438

    Google Scholar 

  • Sorensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyzes of the vegetation on Danish commons. Biologiske Skrifter 5:1–34

    Google Scholar 

  • Sung CS, Jin HW (2000) A tabu-search-based heuristic for clustering. Pattern Recognit 33(5):849–858

  • Tsai CF, Tsai CW, Wu HC, Yang T (2004) ACODF: a novel data clustering approach for data mining in large databases. J Syst Softw 73(1):133–145

  • Teppola P, Mujunen SP, Minkkinen P (1999) Adaptive fuzzy C-means clustering in process monitoring. In: Chemometrics and intelligent laboratory systems 45(1):23–28

  • Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85:317–325

    Article  MATH  MathSciNet  Google Scholar 

  • Tseng LY, Yang SB (1997) Genetic algorithms for clustering, feature selection and classification. IEEE Int Conf Neural Netw 3:1612–1616

    Google Scholar 

  • Tseng LY, Yang SB (2001) A genetic approach to the automatic clustering problem. Pattern Recognit 34(2):415–424

    Article  MATH  Google Scholar 

  • Wang W, Yang J, Muntz R (1997) STING: a statistical information grid approach to spatial data mining. In: Proceedings of the 1997 international conference on very large data base (VLDB’97), Athens, Greek, pp 186–195

  • Webb A (2002) Statistical pattern recognition. Wiley, New Jersey

    Book  MATH  Google Scholar 

  • Webb GI (2000) Multiboosting: a technique for combining boosting and wagging. Mach Learn 40(2):159–196

    Article  Google Scholar 

  • Xu R, Wunsch DC (2009) Clustering. Oxford, Wiley

  • Yan X, Zhu Y, Zou W, Wang L (2012) A new approach for data clustering using hybrid artificial bee colony algorithm. Neuro Comput 97:241–250

    Google Scholar 

  • Yang Y, Kamel MS (2006) An aggregated clustering approach using multi-ant colonies algorithms. Pattern Recognit 39(7):1278–1289

    Article  MATH  Google Scholar 

  • Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the ACM SIGMOD conference on management of data, pp 103–114

  • Zhou H, Yonghuai L (2008) Accurate integration of multi-view range images using k-means clustering. Pattern Recognit 41(1):152–175

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kumar.

Additional information

Communicated by E. Lughofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, Y., Sahoo, G. Hybridization of magnetic charge system search and particle swarm optimization for efficient data clustering using neighborhood search strategy. Soft Comput 19, 3621–3645 (2015). https://doi.org/10.1007/s00500-015-1719-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1719-0

Keywords

Navigation