Skip to main content
Log in

A knowledge-based cooperative differential evolution for neural fuzzy inference systems

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This study presents a knowledge-based cooperative differential evolution (KCoDE) for neural fuzzy inference systems to solve nonlinear control system problems. KCoDE decomposes the fuzzy system into subpopulations, and each individual within each subpopulation evolves separately. The KCoDE method uses five mutation strategies of differential evolution as the knowledge sources to generate a new population space to influence the population space. The exemplary individuals are selected from the population space to the belief space. The belief space in KCoDE is the information repository in which individuals can store their experiences to guide others. Finally, the experimental results show that the proposed KCoDE method better approximates the global optimal solution and has a faster convergence rate than the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Chen CH, Lin CJ, Lin CT (2008) A functional-link-based neuro-fuzzy network for nonlinear system control. IEEE Trans Fuzzy Syst 16(5):1362–1378

    Article  Google Scholar 

  • Chen CH, Lin CJ, Lin CT (2009) Nonlinear system control using adaptive neural fuzzy networks based on a modified differential evolution. IEEE Trans Syst Man Cybern C Appl Rev 39(4):459–473

    Article  Google Scholar 

  • Coelho LS, Mariani VC (2006) Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Trans Power Syst 21(2):989–996

    Article  Google Scholar 

  • Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141

    Article  Google Scholar 

  • Fan HY, Lampinen J (2003) A trigonometric mutation operation to differential evolution. J Global Optim 27(1):333–359

    Article  MathSciNet  Google Scholar 

  • Farag WA, Quintana VH, Lambert-Torres G (1998) A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems. IEEE Trans Neural Netw 9(5):756–767

    Article  Google Scholar 

  • Garcia-Pedrajas N, Hervas-Martinez U, Ortiz-Boyer D (2005) Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans Evol Comput 9(3):271–302

    Article  Google Scholar 

  • Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195

    Article  Google Scholar 

  • Hauser J, Sastry S, Kokotovic P (1992) Nonlinear control via approximate input-output lineariztion: the ball and beam example. IEEE Trans Autom Control 37(3):392–398

    Article  MathSciNet  Google Scholar 

  • Heyes C, Huber L (2000) The evolution of cognition. MIT Press, Cambridge

    Google Scholar 

  • Hsu CH, Juang CF (2012) Evolutionary Robot wall-following control using type-2 fuzzy controller with species-DE activated continuous ACO. IEEE Trans Fuzzy Syst (to appear)

  • Juang CF, Chang PH (2010) Designing fuzzy-rule-based systems using continuous ant-colony optimization. IEEE Trans Fuzzy Syst 18(1):138–149

    Article  Google Scholar 

  • Juang CF, Lo C (2008) Zero-order TSK-type fuzzy system learning using a two-phase swarm intelligence algorithm. Fuzzy Sets Syst 159(21):2910–2926

    Article  MathSciNet  Google Scholar 

  • Juang CF, Hsiao CM, Hsu CH (2010) Hierarchical cluster-based multispecies particle-swarm optimization for fuzzy-system optimization. IEEE Trans Fuzzy Syst 18(1):14–26

    Article  Google Scholar 

  • Khushaba RN, Al-Ani A, Al-Jumaily A (2011) Feature subset selection using differential evolution and a statistical repair mechanism. Expert Syst Appl 38(9):11515–11526

    Article  Google Scholar 

  • Lipowski A, Lipowska D (2012) Roulette-wheel selection via stochastic acceptance. Phys A Stat Mech Appl 391(6):2193–2196

    Article  Google Scholar 

  • Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4(1):1–32

    Article  Google Scholar 

  • Patra JC, Pal RN, Chatterji BN, Panda G (1999) Identification of nonlinear dynamic systems using functional link artificial neural networks. IEEE Trans Syst Man Cybern B 29(2):254–262

    Article  Google Scholar 

  • Pena-Reyes CA, Sipper M (2001) Fuzzy CoCo: a cooperative-coevolutionary approach to fuzzy modeling. IEEE Trans Fuzzy Syst 9(5):727–737

    Article  Google Scholar 

  • Perez-Godoy MD, Rivera AJ, Berlanga FJ, Del Jesus MJ (2010) CO2RBFN: an evolutionary cooperative-competitive RBFN design algorithm for classification problems. Soft Comput 14(9):953–971

    Article  Google Scholar 

  • Potter MA, De Jong K (1994) A cooperative coevolutionary approach to function optimization. In: Proceedings of the third conference on parallel problem solving from nature, pp 249–257

  • Potter MA, De Jong K (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 8(1):1–29

    Article  Google Scholar 

  • Price KV, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Springer, Germany

    MATH  Google Scholar 

  • Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  • Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79

    Article  Google Scholar 

  • Reynolds RG (1994) An introduction to cultural algorithms. In: Proceedings of the third annual conference evolutionary programming, pp 131–139

  • Reynolds RG, Peng B, Ali MZ (2008) The role of culture in the emergence of decision-making roles: an example using cultural algorithms. Complexity 13(3):27–42

    Article  Google Scholar 

  • Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetic. IEEE Trans Antennas Propag 52(2):397–407

    Article  MathSciNet  Google Scholar 

  • Runarsson TP, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4(3):284–294

    Article  Google Scholar 

  • Saleem S, Reynolds R (2000) Cultural algorithms in dynamic environments. In: Proceedings of the congress on evolutionary computation, pp 1513–1520

  • Storn R (1999) System design by constraint adaptation and differential evolution. IEEE Trans Evol Comput 3(1):22–34

    Article  Google Scholar 

  • Storn R, Price KV (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Opt 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Tan KC, Yang YJ, Goh CK (2006) A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Trans Evol Comput 10(5):527–549

    Article  Google Scholar 

  • Tanomaru J, Omatu S (1992) Process control by on-line trained neural controllers. IEEE Trans Ind Electron 39(6):511–521

    Article  Google Scholar 

  • van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239

    Article  Google Scholar 

  • Wang WY, Cheng CY, Leu YG (2004) An online GA-based output-feedback direct adaptive fuzzy-neural controller for uncertain nonlinear systems. IEEE Trans Syst Man Cybern B 34(1):334–345

    Article  Google Scholar 

  • Wynne CD (2001) Animal cognition: the mental lives of animals. Palgrave Macmillan, Great Britain

    Google Scholar 

  • Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimization using cooperative coevolution. Inf Sci 178(15):2985–2999

    Article  MathSciNet  Google Scholar 

  • Yao X, Liu Y (1997) A new evolutionary system for evolving artificial neural networks. IEEE Trans Neural Netw 8(3):694–713

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the National Science Council, Taiwan, R.O.C., under Grant NSC 101-2221-E-150-085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hung Chen.

Additional information

Communicated by Y. Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CH., Yang, SY. A knowledge-based cooperative differential evolution for neural fuzzy inference systems. Soft Comput 17, 883–895 (2013). https://doi.org/10.1007/s00500-012-0959-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-012-0959-5

Keywords

Navigation