Mathematics of Control, Signals and Systems

, Volume 15, Issue 1, pp 42–70

Exponential Stability of Nonlinear Time-Varying Differential Equations and Partial Averaging

Authors

  • Joan Peuteman
    • SYSTeMS, Universiteit Gent, Technologiepark-Zwijnaarde 9, 9052 Gent (Zwijnaarde), Belgium.¶Joan Peuteman is presently working at the KHBO, Departement Industrieële Wetenschappen en Technologie, Zeedijk 101, 8400 Oostende, Belgium. Joan.Peuteman@kh.khbo.be.
  • Dirk Aeyels
    • SYSTeMS, Universiteit Gent, Technologiepark-Zwijnaarde 9, 9052 Gent (Zwijnaarde), Belgium.

DOI: 10.1007/s004980200002

Cite this article as:
Peuteman, J. & Aeyels, D. Math. Control Signals Systems (2002) 15: 42. doi:10.1007/s004980200002

Abstract.

In this paper we formulate, within the Liapunov framework, a sufficient condition for exponential stability of a differential equation. This condition gives rise to a new averaging result referred to as “partial averaging”: exponential stability of a system \(\), with α sufficiently large, is implied by exponential stability of a time-varying system \(\).

Key words. Differential equations, Exponential stability, Liapunov stability, Averaging, Circle criterion.
Download to read the full article text

Copyright information

© Springer-Verlag London Limited 2002