Skip to main content
Log in

Boundary controllability of incompressible Euler fluids with Boussinesq heat effects

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

This paper deals with the boundary controllability of inviscid incompressible fluids for which thermal effects are important. They will be modeled through the so-called Boussinesq approximation. In the zero heat diffusion case, by adapting and extending some ideas from J.-M. Coron and O. Glass, we establish the simultaneous global exact controllability of the velocity field and the temperature for 2D and 3D flows. When the heat diffusion coefficient is positive, we present some additional results concerning exact controllability for the velocity field and local null controllability of the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bardos C, Frisch U (1976) Finite-time regularity for bounded and unbounded ideal incompressible fluids using Hölder estimates. In: Turbulence and Navier–Stokes equations. Proc. conf., Univ. Paris-Sud, Orsay. Lecture notes in math., vol 565. Springer, Berlin, pp 1–13

  2. Coron J-M (1992) Global asymptotic stabilization for controllable systems without drift. Math Control Signals Syst 5:295–312

    Article  MathSciNet  MATH  Google Scholar 

  3. Coron J-M (1993) Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels. C R Acad Sci Paris Sér I Math 317:271–276

    MathSciNet  Google Scholar 

  4. Coron J-M (1996) On the controllability of \(2\)-D incompressible perfect fluids. J Math Pures Appl (9) 75:155–188

    MathSciNet  MATH  Google Scholar 

  5. Coron J-M (2007) Control and nonlinearity. In: Mathematical surveys and monographs, vol 136. American Mathematical Society, Providence

  6. Fernández-Cara E, Guerrero S (2006) Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J Control Optim 45:1395–1446

    Article  MathSciNet  MATH  Google Scholar 

  7. Glass O (1997) Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles en dimension 3. C R Acad Sci Paris Sér I Math 325:987–992

    Article  MathSciNet  Google Scholar 

  8. Glass O (1998) Contrôlabilité de l’équation d’Euler tridimensionnelle pour les fluides parfaits incompressibles. In: Séminaire sur les Équations aux Dérivées Partielles, 1997–1998, École Polytech., Palaiseau, pp Exp. No. XV, 11

  9. Glass O (2000) Exact boundary controllability of 3-D Euler equation. ESAIM Control Optim Calc Var 5:1–44 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  10. Glowinski R, Lions JL, He J (2008) Exact and approximate controllability for distributed parameter systems. In: Encyclopedia of mathematics and its applications. A numerical approach, vol 117. Cambridge University Press, Cambridge

  11. Hamilton RS (1982) The inverse function theorem of Nash and Moser. Bull Am Math Soc (NS) 7:65–222

    Article  MathSciNet  MATH  Google Scholar 

  12. Kato T (1967) On classical solutions of the two-dimensional nonstationary Euler equation. Arch Rat Mech Anal 25:188–200

    Article  MathSciNet  MATH  Google Scholar 

  13. Kazhikhov AV (1980) The correctness of the nonstationary problem about the flow of the ideal fluid through the given domain. Dinamika Sploshn Sredy 47:37–56 (Russian)

    MathSciNet  MATH  Google Scholar 

  14. Kazhikhov AV (1991) Initial-boundary value problems for the Euler equations of an ideal incompressible fluid (Russian). Vestnik Moskov Univ Ser I Mat Mekh 5:13–19, 96 (translation in Moscow Univ. Math. Bull. 46(5):10–14)

  15. Lasiecka I, Triggiani R (2000) Control theory for partial differential equations: continuous and approximation theories. I and II. In: Encyclopedia of mathematics and its applications, vol 74. Cambridge University Press, Cambridge

  16. Littman W (1978) Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients. Ann Scuola Norm Sup Pisa Cl Sci (4) 5(3):567–580

    MathSciNet  MATH  Google Scholar 

  17. Majda AJ, Bertozzi AL (2002) Vorticity and incompressible flow. In: Cambridge texts in applied mathematics, vol 27. Cambridge University Press, Cambridge

  18. Pedlosky J (1987) Geophysical fluid dynamics. Springer, New York

    Book  MATH  Google Scholar 

  19. Russell DL (1974) Exact boundary value controllability theorems for wave and heat processes in star-complemented regions. In: Differential games and control theory (Proc. NSF—CBMS Regional Res. Conf., Univ. Rhode Island, Kingston, R.I., 1973). Lecture notes in pure appl. math., vol 10. Dekker, New York , pp 291–319

  20. Russell DL (1978) Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev 20(4):639–739

    Article  MathSciNet  MATH  Google Scholar 

  21. Simon J (1987) Compact sets in the space \(L^p\)(0, T;B). Ann Mat Pura Appl (4) 146:65–96

  22. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher (Birkhäuser advanced texts: basel textbooks). Birkhäuser Verlag, Basel

Download references

Acknowledgments

The authors are grateful to the anonymous referees for their valuable comments and suggestions that have allowed to improve a previous version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maurício C. Santos or Diego A. Souza.

Additional information

E. Fernández-Cara was partially supported by Grant MTM2010-15592 (DGI-MICINN, Spain). M. C. Santos was partially supported by CAPES. D. A. Souza was partially supported by CAPES (Brazil) and Grant MTM2010-15592 (DGI-MICINN, Spain).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Cara, E., Santos, M.C. & Souza, D.A. Boundary controllability of incompressible Euler fluids with Boussinesq heat effects. Math. Control Signals Syst. 28, 7 (2016). https://doi.org/10.1007/s00498-015-0158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-015-0158-x

Keywords

Navigation