Skip to main content
Log in

A least-squares formulation for the approximation of controls for the Stokes system

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

This work deals with the approximation of distributed null controls for the Stokes system. The goal is to compute an approximation of controls that drives the solution from a prescribed initial state at \(t=0\) to zero at \(t=T\). The existence of square-integrable controls has been obtained in Fursikov and Imanuvilov (Controllability of evolution equations, pp 1–163, 1996) via Carleman type estimates. We introduce and analyze a least-squares formulation of the controllability problem, and we show that it allows the construction of convergent sequences of functions toward null controls for the Stokes system. The approach consists first in introducing a class of functions satisfying a priori the boundary conditions in space and time—in particular the null controllability condition at time \(T\)—and then finding among this class one element satisfying the Stokes system. This second step is done by minimizing a quadratic functional, among the admissible corrector functions of the Stokes system. Numerical experiments for the two-dimensional case are performed in the framework of finite element approximations and demonstrate the interest of the approach. The method described here does not make use of duality arguments and, therefore, avoids the introduction of numerical ill-posed problem, as is typical when parabolic-type equation is considered. This work extends (Munch and Pedregal in Eur J Appl Math, 2014) where the case of the heat equation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bochev B, Gunzburger M (2009) Least-squares finite element methods, Applied Mathematical Sciences, 166. Springer, New York, xxii+660

  2. Ben Belgacem F, Kaber SM (2011) On the Dirichlet boundary controllability of the one-dimensional heat equation: semi-analytical calculations and ill-posedness degree. Inverse Probl 27(5):055012. doi:10.1088/0266-5611/27/5/055012

  3. Coron JM (2007) Control and nonlinearity. In: Mathematical surveys and monographs, vol 136. American Mathematical Society, Providence, RI, pp xiv+426. ISBN: 978-0-8218-3668-2; 0-8218-3668-4

  4. Coron J-M, Guerrero S (2009) Null controllability of the N-dimensional Stokes system with N-1 scalar controls. J Diff Eq 246(7):2908–2921

    Article  MATH  MathSciNet  Google Scholar 

  5. Fabre C (1995/96) Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems. ESAIM COCV 1:267–302

  6. Fernández-Cara E, Guerrero S, Imanuvilov OY, Puel JP (2004) Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl 83(12):1501–1542

    Article  MATH  MathSciNet  Google Scholar 

  7. Fernández-Cara E, Münch A (2011) Numerical null controllability of a semi-linear heat equation via a least squares method. C R Math Acad Sci Paris 349(15–16):867–871. doi:10.1016/j.crma.2011.07.014

  8. Fernández-Cara E, Münch A (2012) Numerical null controllability of semi-linear 1D heat equations: fixed points, least squares and Newton methods. Math Control Relat Fields 2(3):217–246

    Article  MATH  MathSciNet  Google Scholar 

  9. Fernández-Cara E, Münch A (2013) Strong convergence approximations of null controls for the heat equation. Séma J 61(1):49–78

    MATH  Google Scholar 

  10. Fernández-Cara E, Horsin T, Kasumba H (2013) Some inverse and control problem for fluids. Ann Math Blaise Pascal 20(1):101–138

    Article  MATH  MathSciNet  Google Scholar 

  11. Fursikov AV, Imanuvilov OY (1993) On approximate controllability of the Stokes system. Ann Fac Sci Toulouse II(2):205–232

    Article  MathSciNet  Google Scholar 

  12. Fursikov A-V, Imanuvilov OY (1996) Controllability of Evolution Equations, vol 34., Lecture Notes Series, numberSeoul National University, Korea, pp 1–163

  13. R. Glowinski, Numerical Methods for Nonlinear Variational Problems Springer series in computational physics 1983.

  14. R. Glowinski, Numerical Methods for Fluids, Handbook of Numerical Analysis, P.G. Ciarlet, J.L.Lions editors, Part 3, North Holland, 2003.

  15. Glowinski R, Lions J-L, He J (2008) Exact and approximate controllability for distributed parameter systems: a numerical approach Encyclopedia of Mathematics and its Applications, 117. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Gunzburger M (2003) Perspectives in flow control and optimization, Advances in Design and Control, 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Google Scholar 

  17. Hecht F, Le Hyaric A, Morice J, Ohtsuka K, Pironneau O. Free-Fem++: Third Edition, Version 3.12, http://www.freefem.org/++

  18. Imanuvilov OYu (2001) Remarks on exact controllability for the Navier–Stokes equations. ESAIM Control Optim Cal Var 6:39–72

    Article  MATH  MathSciNet  Google Scholar 

  19. Imanuvilov OYu, Puel J-P, Yamamoto M (2009) Carleman estimates for parabolic equations with nonhomogeneous boundary conditions. Chin Ann Math 30B(4):333–378

    Article  MathSciNet  Google Scholar 

  20. Lasiecka I, Triggiani R (2000) Control theory for partial differential equations: continuous and approximation theories. I. Abstract parabolic systems. Encyclopedia of Mathematics and its Applications, 74. Cambridge University Press, Cambridge

  21. Lions J-L (1988) Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Recherches en Mathématiques Appliquées, Tomes 1 et 2. Masson, Paris

    Google Scholar 

  22. Micu S, Zuazua E (2011) On the regularity of null-controls of the linear 1-d heat equation. C R Acad Sci Paris Ser I 349:673–677

    Article  MATH  MathSciNet  Google Scholar 

  23. Münch A (2013) A variational approach to approximate controls for systems with essential spectrum: application to membranal arch. Evol Equ Control Theory 2(1):119–151

    Article  MATH  MathSciNet  Google Scholar 

  24. Münch A, Zuazua E (2010) Numerical approximation of null controls for the heat equation: ill-posedness and remedies. Inverse Probl 26 (8):085018

  25. Münch A, Pedregal P (2014) Numerical null controllability of the heat equation through a least squares and variational approach. Eur J Appl Math. doi:10.1017/S0956792514000023

  26. Münch A, Pedregal P (2013) A least-squares formulation for the approximation of null controls for the Stokes system. C R Acad Sci Série 1 351:545–550

    MATH  Google Scholar 

  27. Pedregal P (2010) A variational perspective on controllability. Inverse Probl 26(1):015004

  28. Pedregal P (2012) A variational approach for the Navier–Stokes system. J Math Fluid Mech 14(1):159–176

    Article  MATH  MathSciNet  Google Scholar 

  29. Temam R (2001) Navier–Stokes equations. Theory and numerical analysis. Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI

  30. Russell DL (1978) Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev 20:639–739

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Münch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Münch, A. A least-squares formulation for the approximation of controls for the Stokes system. Math. Control Signals Syst. 27, 49–75 (2015). https://doi.org/10.1007/s00498-014-0134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-014-0134-x

Keywords

Navigation