Skip to main content
Log in

On the “redundant” null-pairs of functions connected by a general Linear Fractional Transformation

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We investigate here the interpolation conditions connected to an interpolating function \(Q\) obtained as a Linear Fractional Transformation of another function \(S\). In general, the degree of \(Q\) is equal to the number of interpolating conditions plus the degree of \(S\). We show that, if the degree of \(Q\) is strictly less that this quantity, there is a number of complementary interpolating conditions which has to be satisfied by \(S\). This induces a partitioning of the interpolating conditions in two sets. We consider here the case where these two sets are not necessarily disjoint. The reasoning can also be reversed (i.e. from \(S\) to \(Q\)). To derive the above results, a generalized interpolation problem, which relaxes the usual assumptions on disjointness of the interpolation nodes and the poles of the interpolant, is formulated and solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alpay D (1998) Algorithme de Schur, espaces noyau reproduisant et theorie des systmes. In: Panoramas et Syntheses, vol 6. Société Mathmatique de France, France

  2. Bolotnikov V, Dym H (2006) On boundary interpolation for matrix Schur functions. Mem Am Math Soc 181(856)

  3. Ball JA, Gohberg I, Rodman L (1988) Realization and interpolation of rational matrix functions. Operator Theory Adv Appl 33:1–72

    MathSciNet  Google Scholar 

  4. Byrnes CI, Georgiou TT, Lindquist A (2001) A generalized entropy criterion for Nevanlinna–Pick interpolation with degree constraint. IEEE Trans Autom Control AC-46:822–839

    Article  MathSciNet  Google Scholar 

  5. Dym H (1989) J-contractive matrix functions, reproducing kernel Hilbert spaces and interpolation. In: CBMS regional conference series in mathematics, vol 71. Amer Math Soc, Providence

  6. Dym H (2001) On Riccati equations and reproducing kernel spaces, in recent advances in operator theory: the Israel Gohberg anniversary volume, Israel Gohberg, Aalt Dijksma MA, Kaashoek and André CM Ran (eds) Operator Theory Adv Appl 124:189–215

  7. Francis B (1987) A course in \(H^{\infty }\) control theory. Springer, New York

    Book  MATH  Google Scholar 

  8. Georgiou TT (1987) Realization of power spectra from partial covariance sequences. IEEE Trans Acoust Speech Signal Process AASP-35(4):438–449

    Article  Google Scholar 

  9. Gombani A, Michaletzky Gy (2007) On the Nevanlinna–Pick interpolation problem: analysis of the McMillan degree of the solutions. Linear Algebra Appl 425:486–517

    Article  MathSciNet  MATH  Google Scholar 

  10. Kimura H (1985) Positive partial realization of covariance sequences. In: Byrnes CI, Lindquist A (eds) Modelling, identification and robust control. North-Holland, Amsterdam, pp 499–513

  11. Kucera V (1980) Discrete linear control: the polynomial equation approach. Wiley, New York

    Google Scholar 

  12. Nevanlinna R (1929) Über beschränkte analytische Funktionen. Ann Acad Sci Fenn 32:1–75

    Google Scholar 

  13. Pick G (1916) Über beschränkte analytische Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden. Matematische Annalen 77:7–23

    Article  Google Scholar 

  14. Schur I (1917) Über die Potenzreihen, die im Innerne des Einheitkreises beschränkt sind. Journal für die reine und angewandte Mathematik 147:205–232

    Google Scholar 

  15. Youla D, Jabr H, Bongiorno J Jr (1976) Modern Wiener–Hopf design of optimal controllers—part II: the multivariable case. IEEE Trans Autom Control AC-21:319–338

    Article  MathSciNet  Google Scholar 

  16. Wyman BF, Sain MK (1987) Module theoretic zero structures for system matrices. SIAM J Control Optim 25:86–99

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gombani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaletzky, G., Gombani, A. On the “redundant” null-pairs of functions connected by a general Linear Fractional Transformation. Math. Control Signals Syst. 24, 443–475 (2012). https://doi.org/10.1007/s00498-012-0088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-012-0088-9

Keywords

Navigation