, Volume 26, Issue 3, pp 255-266
Date: 04 Jul 2013

External application of gametophyte-specific ZmPMEI1 induces pollen tube burst in maize

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Regulated demethylesterification of homogalacturonan, a major component of plant cell walls, by the activity of pectin methylesterases (PMEs), plays a critical role for cell wall stability and integrity. Especially fast growing plant cells such as pollen tubes secrete large amounts of PMEs toward their apoplasmic space. PME activity itself is tightly regulated by its inhibitor named as PME inhibitor and is thought to be required especially at the very pollen tube tip. We report here the identification and functional characterization of PMEI1 from maize (ZmPMEI1). We could show that the protein acts as an inhibitor of PME but not of invertases and found that its gene is strongly expressed in both gametophytes (pollen grain and embryo sac). Promoter reporter studies showed gene activity also during pollen tube growth toward and inside the transmitting tract. All embryo sac cells except the central cell displayed strong expression. Weaker signals were visible at sporophytic cells of the micropylar region. ZmPMEI1–EGFP fusion protein is transported within granules inside the tube and accumulates at the pollen tube tip as well as at sites where pollen tubes bend and/or change growth directions. The female gametophyte putatively influences pollen tube growth behavior by exposing it to ZmPMEI1. We therefore simulated this effect by applying recombinant protein at different concentrations on growing pollen tubes. ZmPMEI1 did not arrest growth, but destabilized the cell wall inducing burst. Compared with female gametophyte secreted defensin-like ZmES4, which induces burst at the very pollen tube tip, ZmPMEI1-induced burst occurs at the subapical region. These findings indicate that ZmPMEI1 secreted by the embryo sac likely destabilizes the pollen tube wall during perception and together with other proteins such as ZmES4 leads to burst and thus sperm release.

Communicated by E. Albertini.
A contribution to the Special Issue “HAPRECI—Plant Reproduction Research in Europe”.