Skip to main content
Log in

Volume-based pollen size analysis: an advanced method to assess somatic and gametophytic ploidy in flowering plants

  • Technical Advance
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Abstract

Pollen size is often used as a biological parameter to estimate the ploidy and viability of mature pollen grains. In general, pollen size quantification is performed one- or two-dimensionally using image-based diameter measurements. As these approaches are elaborate and time consuming, alternative approaches that enable a quick, reliable analysis of pollen size are highly relevant for plant research. In this study, we present the volume-based particle size analysis technique as an alternative method to characterize mature pollen. Based on a comparative assay using different plant species (including tomato, oilseed rape, kiwifruit, clover, among others), we found that volume-based pollen size measurements are not biased by the pollen shape or position and substantially reduce non-biological variation, allowing a more accurate determination of the actual pollen size. As such, volume-based particle size techniques have a strong discriminative power in detecting pollen size differences caused by alterations in the gametophytic ploidy level and therefore allow for a quick and reliable estimation of the somatic ploidy level. Based on observations in Arabidopsis thaliana gametophytic mutants and differentially reproducing Boechera polyantha lines, we additionally found that volume-based pollen size analysis provides quantitative and qualitative data about alterations in male sporogenesis, including aneuploid and diploid gamete formation. Volume-based pollen size analysis therefore not only provides a quick and easy methodology to determine the somatic ploidy level of flowering plants, but can also be used to determine the mode of reproduction and to quantify the level of diplogamete formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahloowal BS (1965) A root tip squash technique for screening chromosome number in Lolium. Euphytica 14:170–172

    Article  Google Scholar 

  • Altmann T, Damm B, Frommer WB, Martin T, Morris PC, Schweizer D, Willmitzer L, Schmidt R (1994) Easy determination of ploidy Level in Arabidopsis thaliana plants by means of pollen size Measurement. Plant Cell Rep 13:652–656

    Article  Google Scholar 

  • Avdeef A, Tsinman K, Tsinman O, Sun N, Voloboy D (2009) Miniaturization of powder dissolution measurement and estimation of particle size. Chem Biodivers 6:1796–1811

    Article  PubMed  CAS  Google Scholar 

  • Bamberg JB, Hanneman RE (1991) Rapid ploidy screening of tuber-bearing Solanum (Potato) species through pollen diameter measurement. Am Potato J 68:279–285

    Article  Google Scholar 

  • Barreiros FM, Ferreira PJ, Figueiredo MM (1996) Calculating shape factors from particle sizing data. Part Part Syst Charact 13:368–373

    Article  CAS  Google Scholar 

  • Beck SL, Dunlop RW, Fossey A (2003) Stomatal length and frequency as a measure of ploidy level in black wattle, Acacia mearnsii (de Wild). Bot J Linn Soc 141:177–181

    Article  Google Scholar 

  • Bretagnolle F, Thompson JD (1995) Tansley review no-78—Gametes with the somatic chromosome number—mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22

    Article  Google Scholar 

  • Brownfield L, Köhler C (2011) Unreduced gamete formation in plants: mechanisms and prospects. J Exp Bot 62:1659–1668

    Article  PubMed  CAS  Google Scholar 

  • Chan SWL (2010) Chromosome engineering: power tools for plant genetics. Trends Biotechnol 28:605–610

    Article  PubMed  CAS  Google Scholar 

  • Charles JS, Hamilton ML, Petes TD (2010) Meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae. Genetics 186:537–550

    Article  Google Scholar 

  • Cheng ZM, Korban SS (2011) In vitro ploidy manipulation in the genomics era. Plant Cell Tissue Org 104:281–282

    Article  Google Scholar 

  • Consiglio F, Carputo D, Monti L, Conicella C (2004) Exploitation of genes affecting meiotic non-reduction and nuclear restitution: Arabidopsis as a model? Sex Plant Reprod 17:97–105

    Article  Google Scholar 

  • De Storme N, Geelen D (2011) The Arabidopsis mutant jason produces unreduced first division restitution male gametes through a parallel/fused spindle mechanism in meiosis II. Plant Physiol 155:1403–1415

    Article  PubMed  Google Scholar 

  • De Storme N, Copenhaver GP, Geelen D (2012) Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiol 160:1808–1826

    Article  PubMed  Google Scholar 

  • Deblock M, Debrouwer D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo Genes in the Transgenic Plants. Plant Physiol 91:694–701

    Article  CAS  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. Plos Biol 7(6). doi:10.1371/journal.pbio.1000124

  • d’Erfurth I, Cromer L, Jolivet S, Girard C, Horlow C, Sun YJ, To JPC, Berchowitz LE, Copenhaver GP, Mercier R (2010) The CYCLIN-A CYCA1;2/TAM Is required for the meiosis I to meiosis II transition and cooperates with OSD1 for the prophase to first meiotic division transition. Plos Genet 6(6). doi:10.1371/journal.pgen.1000989

  • Dolezel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot London 95:99–110

    Article  CAS  Google Scholar 

  • Durbarry A, Vizir I, Twell D (2005) Male germ line development in Arabidopsis. duo pollen mutants reveal gametophytic regulators of generative cell cycle progression. Plant Physiol 137:297–307

    Article  PubMed  CAS  Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16:S84–S97

    Article  PubMed  CAS  Google Scholar 

  • Francis KE, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142:1004–1013

    Article  PubMed  CAS  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Gamage HK, Schmidt S (2009) Short communication. A robust method for chromosome quantification and ploidy determination in woody species. Aust J Bot 57:87–93

    Article  CAS  Google Scholar 

  • Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20:589–600

    Article  PubMed  CAS  Google Scholar 

  • Hardie DC, Gregory TR, Hebert PDN (2002) From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem 50:735–749

    Article  PubMed  CAS  Google Scholar 

  • Henry IM, Dilkes BP, Young K, Watson B, Wu H, Comai L (2005) Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics 170:1979–1988

    Article  PubMed  CAS  Google Scholar 

  • Higgins JD, Vignard J, Mercier R, Pugh AG, Franklin FCH, Jones GH (2008) AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in Arabidopsis thaliana, but is not required for synapsis. Plant J 55:28–39

    Article  PubMed  CAS  Google Scholar 

  • Hirsch J, Gallian E (1968) Methods for the determination of adipose cell size in man and animals. J Lipid Res 9:110–119

    PubMed  CAS  Google Scholar 

  • Hulskamp M (2004) Plant trichomes: a model for cell differentiation. Nat Rev Mol Cell Biol 5:471–480

    Article  PubMed  Google Scholar 

  • Hulskamp M, Parekh NS, Grini P, Schneitz K, Zimmermann I, Lolle SJ, Pruitt RE (1997) The STUD gene is required for male-specific cytokinesis after telophase II of meiosis in Arabidopsis thaliana. Dev Biol 187:114–124

    Article  PubMed  CAS  Google Scholar 

  • Hurley J (1970) Sizing particles with a coulter counter. Biophys J 10:74–79

    Article  PubMed  CAS  Google Scholar 

  • Jacob Y, Pierret V (2000) Pollen size and ploidy level in the genus Rosa. Acta Hortic 508:289–292

    Google Scholar 

  • Jansen RC, Dennijs APM (1993) A statistical mixture model for estimating the proportion of unreduced pollen grains in perennial ryegrass (Lolium Perenne L.) via the size of pollen grains. Euphytica 70:205–215

    Article  Google Scholar 

  • Johansen B, Vonbothmer R (1994) Pollen size in Hordeum L.—correlation between size, ploidy level, and breeding system. Sex Plant Reprod 7:259–263

    Article  Google Scholar 

  • Johnston JS, Bennett MD, Rayburn AL, Galbraith DW, Price HJ (1999) Reference standards for determination of DNA content of plant nuclei. Am J Bot 86:609–613

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Heslop-Harrison J (eds) (1996) Classical and molecular cytogenetics of Arabidopsis thaliana. Oxford University Press, Oxford

    Google Scholar 

  • Jones KD, Reed SM (2007) Analysis of ploidy level and its effects on guard cell length, pollen diameter, and fertility in Hydrangea macrophylla. HortScience 42:483–488

    Google Scholar 

  • Kantama L, Sharbel TF, Schranz ME, Mitchell-Olds T, de Vries S, de Jong H (2007) Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes. Proc Natl Acad Sci USA 104:14026–14031

    Article  PubMed  CAS  Google Scholar 

  • Kapadia ZJ, Gould FW (1964) Biosystematic studies in the Bouteloua curtipendula complex. III. Pollen size as related to chromosome numbers. Am J Bot 51:166–172

    Article  Google Scholar 

  • Katsiotis A, Forsberg RA (1995) Pollen grain size in four ploidy levels of genus Avena. Euphytica 83:103–108

    Article  Google Scholar 

  • Kelly JK, Rasch A, Kalisz S (2002) A method to estimate pollen viability from pollen size variation. Am J Bot 89:1021–1023

    Article  PubMed  Google Scholar 

  • Keyvani A, Strom K (2013) A fully-automated image processing technique to improve measurement of suspended particles and flocs by removing out-of-focus objects. Comput Geosci 52:189–198

    Article  Google Scholar 

  • Liu JJ, Qu LJ (2008) Meiotic and mitotic cell cycle mutants involved in gametophyte development in Arabidopsis. Mol Plant 1:564–574

    Article  PubMed  CAS  Google Scholar 

  • Loidl J (1995) Meiotic chromosome pairing in triploid and tetraploid Saccharomyces cerevisiae. Genetics 139:1511–1520

    PubMed  CAS  Google Scholar 

  • Lu XD, Liu XL, An LZ, Zhang W, Sun J, Pei HJ, Meng HY, Fan YL, Zhang CY (2008) The Arabidopsis MutS homolog AtMSH5 is required for normal meiosis. Cell Res 18:589–599

    Article  PubMed  CAS  Google Scholar 

  • Mason AS, Nelson MN, Yan GJ, Cowling WA (2011) Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biol 11:103

    Article  PubMed  CAS  Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  PubMed  CAS  Google Scholar 

  • McTainsh GH, Lynch AW, Hales R (1997) Particle size analysis of aeolian dusts, soils and sediments in very small quantities using a coulter multisizer. Earth Surf Process Landf 22:1207–1216

    Article  CAS  Google Scholar 

  • Miller BV, Lines RW (1988) Recent advances in particle size measurements—a critical review. Crit Rev Anal Chem 20:75–116

    Article  CAS  Google Scholar 

  • Mishiba K, Mii M (2000) Polysomaty analysis in diploid and tetraploid Portulaca grandiflora. Plant Sci 156:213–219

    Article  PubMed  CAS  Google Scholar 

  • Narhi LO, Jiang YJ, Cao S, Benedek K, Shnek D (2009) A critical review of analytical methods for subvisible and visible particles. Curr Pharm Biotechnol 10:373–381

    Article  PubMed  CAS  Google Scholar 

  • Ockendon DJ (1988) The ploidy of plants obtained from another culture of cauliflowers (Brassica oleracea Var Botrytis). Ann Appl Biol 113:319–325

    Article  Google Scholar 

  • Ortiz R (1997) Occurrence and inheritance of 2n pollen in Musa. Ann Bot 79:449–453

    Article  Google Scholar 

  • Pecrix Y, Rallo G, Folzer H, Cigna M, Gudin S, Le Bris M (2011) Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp. J Exp Bot 62:3587–3597

    Article  PubMed  CAS  Google Scholar 

  • Petit C, Bretagnolle F, Felber F (1999) Evolutionary consequences of diploid-polyploid hybrid zones in wild species. Trends Ecol Evol 14:306–311

    Article  PubMed  Google Scholar 

  • Pichot C, El Maataoui M (2000) Unreduced diploid nuclei in Cupressus dupreziana A. Camus pollen. Theor Appl Genet 101:574–579

    Article  Google Scholar 

  • Praca-Fontes MM, Carvalho CR, Clarindo WR (2011) C-value reassessment of plant standards: an image cytometry approach. Plant Cell Rep 30:2303–2312

    Article  PubMed  CAS  Google Scholar 

  • Pradillo M, Lopez E, Romero C, Sanchez-Moran E, Cunado N, Santos JL (2007) An analysis of univalent segregation in meiotic mutants of Arabidopsis thaliana: a possible role for synaptonemal complex. Genetics 175:505–511

    Article  PubMed  CAS  Google Scholar 

  • Przywara L, Pandey KK, Sanders PM (1988) Length of stomata as an indicator of ploidy level in Actinidia deliciosa. New Zeal J Bot 26:179–182

    Article  Google Scholar 

  • Quarin CL, Hanna WW (1980) Effect of three ploidy levels on meiosis and mode of reproduction in Paspalum hexastachyum. Crop Sci 20:69–75

    Article  Google Scholar 

  • Ramanna MS, Jacobsen E (2003) Relevance of sexual polyploidization for crop improvement—a review. Euphytica 133:3–18

    Article  Google Scholar 

  • Ramsey J (2007) Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity 98:143–150

    Article  PubMed  CAS  Google Scholar 

  • Schols P, Dessein S, D’Hondt C, Huysmans S, Smets E (2002) Carnoy: a new digital measurement tool for palynology. Grana 41:124–126

    Article  Google Scholar 

  • Shaheen N, Khan MA, Hayat MQ, Yasmin G (2009) Pollen morphology of 14 species of Abutilon and Hibiscus of the family Malvaceae (sensu stricto). J Med Plants Res 3:921–929

    Google Scholar 

  • Shekunov BY, Chattopadhyay P, Tong HHY, Chow AHL (2007) Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res 24:203–227

    Article  PubMed  CAS  Google Scholar 

  • Singsit C, Oziasakins P (1992) Rapid estimation of ploidy levels in in vitro regenerated interspecific Arachis hybrids and fertile triploids. Euphytica 64:183–188

    Article  Google Scholar 

  • Spielman M, Preuss D, Li FL, Browne WE, Scott RJ, Dickinson HG (1997) TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana. Development 124:2645–2657

    PubMed  CAS  Google Scholar 

  • Tan GY, Dunn GM (1973) Relationship of stomatal length and frequency and pollen grain diameter to ploidy level in Bromus inermis Leyss. Crop Sci 13:332–334

    Article  Google Scholar 

  • Vilhar B, Greilhuber J, Koce JD, Temsch EM, Dermastia M (2001) Plant genome size measurement with DNA image cytometry. Ann Bot 87:719–728

    Article  CAS  Google Scholar 

  • Walker PH, Woodyer KD, Hutka J (1974) Particle size measurements by Coulter Counter of very small deposits and low suspended sediment concentrations in streams. J Sediment Petrol 44:673–679

    Google Scholar 

  • Walstra P, Oortwijn H (1969) Estimating globule size distribution of oil-in-water emulsions by Coulter Counter. J Colloid Interf Sci 29:424–431

    Article  CAS  Google Scholar 

  • Yang CY, Spielman M, Coles JP, Li Y, Ghelani S, Bourdon V, Brown RC, Lemmon BE, Scott RJ, Dickinson HG (2003) TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant J 34:229–240

    Article  PubMed  CAS  Google Scholar 

  • Zlesak DC (2009) Pollen diameter and guard cell length as predictors of ploidy in diverse rose cultivars, species, and breeding lines. Flor Ornam Biotechnol 3:53–70

    Google Scholar 

Download references

Acknowledgments

We would like to thank Susan Armstrong (University of Birmingham) for demonstrating the meiotic spreading protocol. Gratitude to Tim Bekaert (University of Ghent, Civil Engineering) for helping with the MATLAB-based image analysis and particle sizing software. Many thanks to Rob Dirks (Rijk Zwaan Breeding B. V.), Raphael Mercier (INRA, Versailles), Rod Scott (University of Bath), and Filip Debersaques (University College Ghent) for providing plant material. This research is supported by an aspirant fellowship to Nico De Storme and research grant G006709N offered by the Flemish Funding Agency for Scientific Research (FWO). Collaborations and travel were supported by the COST action FA0903.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Geelen.

Additional information

Communicated by Scott Russell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

497_2012_209_MOESM1_ESM.pptx

Suppl. Fig. 1 Volume-based diameter distribution and representative images of mature pollen harvested from kiwifruit (a), poppy (b), lily (c), and lesser bindweed (d); scale bar, 25 µm Supplementary material 1 (PPTX 980 kb)

497_2012_209_MOESM2_ESM.pptx

Suppl. Fig. 2 Size distribution and overlay of pollen isolated from diploid, tetraploid, and octaploid Arabidopsis plants acquired by image-based one-and two-dimensional pollen size analysis (minor and major axis length and transsectional area, respectively) Supplementary material 2 (PPTX 316 kb)

497_2012_209_MOESM3_ESM.pptx

Suppl. Fig. 3 Chromosome spreads of male meiocytes at the start of the second meiotic division in diploid, tetraploid, and triploid Arabidopsis plants Supplementary material 3 (PPTX 888 kb)

497_2012_209_MOESM4_ESM.pptx

Suppl. Table 1 Volume-based pollen size characteristics for a somatic ploidy series in Arabidopsis thaliana Supplementary material 4 (PPTX 46 kb)

497_2012_209_MOESM5_ESM.m

Suppl. File MATLAB-based image analysis software program for the analysis of pollen grain size Supplementary material 5 (M 2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Storme, N., Zamariola, L., Mau, M. et al. Volume-based pollen size analysis: an advanced method to assess somatic and gametophytic ploidy in flowering plants. Plant Reprod 26, 65–81 (2013). https://doi.org/10.1007/s00497-012-0209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-012-0209-0

Keywords

Navigation