Skip to main content
Log in

G-parking functions and tree inversions

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

A depth-first search version of Dhar’s burning algorithm is used to give a bijection between the parking functions of a graph and labeled spanning trees, relating the degree of the parking function with the number of inversions of the spanning tree. Specializing to the complete graph solves a problem posed by R. Stanley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Baker and S. Norine: Riemann-Roch and Abel-Jacobi theory on a finite graph, Adv. Math. 215 (2007), 766–788.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Baker and F. Shokrieh: Chipring games, potential theory on graphs, and spanning trees, J. Combin. Theory Ser. A 120 (2013), 164–182.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. S. Beissinger: On external activity and inversions in trees, J. Combin. Theory Ser. B 33 (1982), 87–92.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. L. Biggs: Chipring and the critical group of a graph, J. Algebraic Combin. 9 (1999), 25–45.

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Chvatal and P. L. Hammer: Aggregation of inequalities in integer programming, in: Studies in integer programming (Proc. Workshop, Bonn, 1975), 145–162, Ann. of Discrete Math., Vol. 1. North-Holland, Amsterdam, 1977.

    Google Scholar 

  6. R. Cori and Y. Le Borgne: The sand-pile model and Tutte polynomials, Adv. in Appl. Math. 30 (2003), 44–52, Formal power series and algebraic combinatorics (Scottsdale, AZ, 2001).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Dhar: Theoretical studies of self-organized criticality, Phys. A 369 (2006), 29–70.

    Article  MathSciNet  Google Scholar 

  8. I. M. Gessel: Enumerative applications of a decomposition for graphs and digraphs, Discrete Math. 139 (1995), 257–271, Formal power series and algebraic combinatorics (Montreal, PQ, 1992).

    Article  MathSciNet  MATH  Google Scholar 

  9. I. M. Gessel and B. E. Sagan: The Tutte polynomial of a graph, depth-first search, and simplicial complex partitions, Electron. J. Combin., 3(2):Research Paper 9, 1996. The Foata Festschrift.

    Google Scholar 

  10. A. Guedes de Oliveira and M. Las Vergnas: Parking functions and labeled trees, Sém. Lothar. Combin. 65 (2010/12), Art. B65e, 10.

  11. M. D. Haiman: Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin. 3 (1994), 17–76.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. E. Holroyd, L. Levine, K. Meszaros, Y. Peres, J. Propp and D. B. Wilson: Chipring and rotor-routing on directed graphs, in: In and out of equilibrium. 2, volume 60 of Progr. Probab., 331–364. Birkhlauser, Basel, 2008.

    Google Scholar 

  13. S. Hopkins and D. Perkinson: Bigraphical arrangements, To appear in Trans. Amer. Math. Soc.; eprint, arXiv:1212.4398, 2012.

    Google Scholar 

  14. A. G. Konheim and B. Weiss: An occupancy discipline and applications, SIAM J. Applied Math. 14 (1966), 1266–1274.

    Article  MATH  Google Scholar 

  15. G. Kreweras: Une famille de polyn omes ayant plusieurs propriétésénumeratives, Period. Math. Hungar. 11 (1980), 309–320.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. J. Lorenzini: Arithmetical graphs, Math. Ann. 285 (1989), 481–501.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. J. Lorenzini: Anite group attached to the Laplacian of a graph, Discrete Math. 91 (1991), 277–282.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. V. R. Mahadev and U. N. Peled: Threshold graphs and related topics, volume 56 of Annals of Discrete Mathematics, North-Holland Publishing Co., Amsterdam, 1995.

    MATH  Google Scholar 

  19. C. Merino Lopez: Chipring and the Tutte polynomial, Ann. Comb. 1 (1997), 253–259.

    Article  MathSciNet  MATH  Google Scholar 

  20. J.-C. Novelli and J.-Y. Thibon: Hopf algebras and dendriform structures arising from parking functions, Fund. Math. 193 (2007), 189–241.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Postnikov and B. Shapiro: Trees, parking functions, syzygies, and deformations of monomial ideals, Trans. Amer. Math. Soc. 356 (2004), 3109–3142 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Shin: A new bijection between forests and parking functions, eprint, arXiv:0810.0427, 2008.

    Google Scholar 

  23. R. P. Stanley: An introduction to hyperplane arrangements, in: Geometric combinatorics, volume 13 of IAS/Park City Math. Ser., 389–496, Amer. Math. Soc., Providence, RI, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Perkinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perkinson, D., Yang, Q. & Yu, K. G-parking functions and tree inversions. Combinatorica 37, 269–282 (2017). https://doi.org/10.1007/s00493-015-3191-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-015-3191-y

Mathematics Subject Classification (2000)

Navigation