Skip to main content

Advertisement

Log in

Current and future carbon budget at Takayama site, Japan, evaluated by a regional climate model and a process-based terrestrial ecosystem model

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Accurate projection of carbon budget in forest ecosystems under future climate and atmospheric carbon dioxide (CO2) concentration is important to evaluate the function of terrestrial ecosystems, which serve as a major sink of atmospheric CO2. In this study, we examined the effects of spatial resolution of meteorological data on the accuracies of ecosystem model simulation for canopy phenology and carbon budget such as gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production (NEP) of a deciduous forest in Japan. Then, we simulated the future (around 2085) changes in canopy phenology and carbon budget of the forest by incorporating high-resolution meteorological data downscaled by a regional climate model. The ecosystem model overestimated GPP and ER when we inputted low-resolution data, which have warming biases over mountainous landscape. But, it reproduced canopy phenology and carbon budget well, when we inputted high-resolution data. Under the future climate, earlier leaf expansion and delayed leaf fall by about 10 days compared with the present state was simulated, and also, GPP, ER and NEP were estimated to increase by 25.2%, 23.7% and 35.4%, respectively. Sensitivity analysis showed that the increase of NEP in June and October would be mainly caused by rising temperature, whereas that in July and August would be largely attributable to CO2 fertilization. This study suggests that the downscaling of future climate data enable us to project more reliable carbon budget of forest ecosystem in mountainous landscape than the low-resolution simulation due to the better predictions of leaf expansion and shedding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arora VK, Boer GJ, Friedlingstein P, Eby M, Jones CD, Christian JR, Bonan G, Bopp L, Brovkin V, Cadule P, Hajima T, Ilyina T, Lindsay K, Tjiputra JF, Wu T (2013) Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. J Clim 26:5289–5314

    Article  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forest. Science 320:1444–1449

    Article  CAS  Google Scholar 

  • Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327

    Article  Google Scholar 

  • Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: a literature review. J Plant Res 126:447–460

    Article  Google Scholar 

  • Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Change Biol 12:154–164

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2015) Global forest resources assessment 2015. Forest area and forest characteristics. http://www.fao.org/3/a-i4808e.pdf. Accessed 2 December 2016

  • Franklin O, Johansson J, Dewar RC, Dieckmann U, McMurtrie RE, Brännström Å, Dybzinski R (2012) Modeling carbon allocation in trees: a search for principles. Tree Physiol 32:648–666

    Article  CAS  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, Bloh WV, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim 19:3337–3353

    Article  Google Scholar 

  • Harada Y, Kamahori H, Kobayashi C, Endo H, Kobayashi S, Ota Y, Onoda H, Onogi K, Miyaoka K, Takahashi K (2016) The JRA-55 reanalysis: representation of atmospheric circulation and climate variability. J Meteorol Soc Japan. doi:10.2151/jmsj.2016-015

    Google Scholar 

  • Ichii K, Kondo M, Lee YH, Wang SQ, Kim J, Ueyama M, Lim HJ, Shi H, Suzuki T, Ito A, Kwon H, Ju W, Huang M, Sasai T, Asanuma J, Han S, Hirano T, Hirata R, Kato T, Li SG, Li YN, Maeda T, Miyata A, Matsuura Y, Murayama S, Nakai Y, Ohta T, Saitoh TM, Saigusa N, Takagi K, Tang YH, Wang HM, Yu GR, Zhang YP, Zhao FH (2013) Site-level model-data synthesis of terrestrial carbon fluxes in CarboEastAsia eddy-covariance observation network: toward future modeling efforts. J For Res 18:13–20

    Article  CAS  Google Scholar 

  • Iizumi T, Nishimori M, Yokozawa M (2008) Combined equations for estimating global solar radiation: projection of radiation field over Japan under global warming condition by statistical downscaling. J Agric Meteorol 64:9–23

    Article  Google Scholar 

  • Intergovenmental Panel on Climate Change (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press. http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf. Accessed 2 December 2016

  • Ito A (2008) The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data. Agric For Meteorol 148:738–747

    Article  Google Scholar 

  • Ito A (2010) Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: implications for long-term monitoring from a process-based model. J Plant Res 123:577–588

    Article  Google Scholar 

  • Ito A, Oikawa T (2002) A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecol Model 151:147–179

    Article  Google Scholar 

  • Ito A, Sasai T (2006) A comparison of simulation results from two terrestrial carbon cycle models using three climate data sets. Tellus 58B:513–522

    Article  CAS  Google Scholar 

  • Ito A, Saigusa N, Murayama S, Yamamoto S (2005) Modeling of gross and net carbon dioxide exchange over a cool-temperate deciduous broad-leaved forest in Japan: analysis of seasonal and interannual change. Agric For Meteorol 134:122–134

    Article  Google Scholar 

  • Ito A, Muraoka H, Koizumi H, Saigusa N, Murayama S, Yamamoto S (2006) Seasonal variation in leaf properties and ecosystem carbon budget in a cool-temperate deciduous broad-leaved forest: simulation analysis at Takayama site, Japan. Ecol Res 21:137–149

    Article  CAS  Google Scholar 

  • Ito A, Inatomi M, Mo W, Lee M, Koizumi H, Saigusa N, Murayama S, Yamamoto S (2007) Examination of model-estimated ecosystem respiration by use of flux measurement data from a cool-temperate deciduous broad-leaved forest in central Japan. Tellus 59B:616–624

    Article  Google Scholar 

  • Jung M, Vetter M, Herold M, Churkina G, Reichstein M, Zaehle S, Cias P, Viovy N, Bondeau A, Chen Y, Trusilova K, Feser F, Heimann M (2007) Uncertainties of modeling gross primary productivity over Europe: a systematic study on the effects of using different drivers and terrestrial biosphere models. Global Biogeochem Cycles 21:GB4021. doi:10.1029/2006GB002915

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kawase H, Hara M, Yoshikane T, Ishizaki NN, Uno F, Hatsushika H, Kimura F (2013) Altitude dependency of future snow cover changes over central Japan evaluated by a regional climate model. J Geophys Res 118:12444–12457

    Google Scholar 

  • Keenan TF, Gray J, Friedl MA, Toomey M, Bohrer G, Hollinger DY, Munger JW, O’Keefe J, Schmid HP, Wing IS, Yang B, Richardson AD (2014) Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat Clim Change 4:598–604

    Article  CAS  Google Scholar 

  • Kistler R, Collins W, Saha S, White G, Woollen J, Kalnay E, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, Dool HVD, Junne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Amer Meteorol Soc 82:247–267

    Article  Google Scholar 

  • Kobayashi K, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Japan 93:5–48

    Article  Google Scholar 

  • Kondo M, Ichii K, Ueyama M (2015) Impact of anomalous climates on carbon allocation to biomass production of leaves, woody components, and fine roots in a cool-temperate deciduous forest. Agric For Meteorol 201:38–50

    Article  Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462

    Article  Google Scholar 

  • Kuribayashi M, Noh NJ, Saitoh TM, Tamagawa I, Wakazuki Y, Muraoka H (2013) Comparison of snow water equivalent estimated in central Japan by high-resolution simulations using different land-surface models. SOLA 9:148–152

    Article  Google Scholar 

  • Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest ecosystems. Glob Change Biol 13:2089–2109

    Article  Google Scholar 

  • Morin X, Roy J, Sonié L, Chuine I (2010) Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol 186:900–910

    Article  Google Scholar 

  • Muraoka H, Saigusa N, Nasahara KN, Noda H, Yoshino J, Saitoh TM, Nagai S, Murayama S, Koizumi H (2010) Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan. J Plant Res 123:563–576

    Article  CAS  Google Scholar 

  • Muraoka H, Saitoh TM, Nagai S (2015) Long-term and interdisciplinary research on forest ecosystem functions: challenges at Takayama site since 1993. Ecol Res 30:197–200

    Article  Google Scholar 

  • Nagai S, Saitoh TM, Kurumado K, Tamagawa I, Kobayashi H, Inoue T, Suzuki R, Gamo M, Muraoka H, Nasahara KN (2013) Detection of bio-meteorological year-to-year variation by using digital canopy surface images of a deciduous broad-leaved forest. SOLA 9:106–110

    Article  Google Scholar 

  • Nagai S, Inoue T, Ohtsuka T, Kobayashi H, Kurumado K, Muraoka H, Nasahara KN (2014) Relationship between spatio-temporal characteristics of leaf-fall phenology and seasonal variations in near surface- and satellite-observed vegetation indices in a cool-temperate deciduous broad-leaved forest in Japan. Int J Remote Sensing 35:3520–3536

    Article  Google Scholar 

  • Nagai S, Saitoh TM, Nasahara KN, Suzuki R (2015) Spatio-temporal distribution of the timing of start and end of growing season along vertical and horizontal gradients in Japan. Int J Biometeorol 59:47–54

    Article  Google Scholar 

  • Nakamura M, Muller O, Tayanagi S, Nakaji T, Hiura T (2010) Experimental branch warming alters tall tree leaf phenology and acorn production. Agric For Meteorol 150:1026–1029

    Article  Google Scholar 

  • Nakicenovic N, Swart R (Eds) (2000) IPCC special report: emissions scenarios. Cambridge University Press

  • Nasahara KN, Nagai S (2015) Review: Development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN). Ecol Res 30:211–223

    Article  Google Scholar 

  • Noda HM, Muraoka H, Nasahara KN, Saigusa N, Murayama S, Koizumi H (2015) Phenology of leaf morphological, photosynthetic, and nitrogen use characteristics of canopy trees in a cool-temperate deciduous broadleaf forest at Takayama, central Japan. Ecol Res 30:247–266

    Article  CAS  Google Scholar 

  • Noh NJ, Kuribayashi M, Saitoh TM, Nakaji T, Nakamura M, Hiura T, Muraoka H (2016) Response of soil, heterotrophic, and autotrophic respiration to experimental open-field soil warming in a cool-temperate deciduous forest. Ecosystems 19:504–420

    Article  CAS  Google Scholar 

  • Ohtsuka T, Akiyama T, Hashimoto Y, Inatomi M, Sakai T, Jia S, Mo W, Tsuda S, Koizumi H (2005) Biometric based estimates of net primary production (NPP) in a cool-temperate deciduous forest stand beneath a flux tower. Agric For Meteorol 134:27–38

    Article  Google Scholar 

  • Ohtsuka T, Saigusa N, Koizumi H (2009) On linking multiyear biometric measurements of tree growth with eddy covariance-based net ecosystem production. Global Change Biol 15:1015–1024

    Article  Google Scholar 

  • Polgar CA, Primack RB (2011) Leaf-out phenology of temperature woody plants: from trees to ecosystems. New Phytol 191:926–941

    Article  Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173

    Article  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-NEWS (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecelogia 126:543–562

    Article  CAS  Google Scholar 

  • Ryan EM, Ogle K, Zelikova TJ, LeCain DR, Williams DG, Morgan JA, Pendall E (2015) Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO2 and warming. Glob Change Biol 21:2588–2602

    Article  Google Scholar 

  • Saigusa N, Yamamoto S, Murayama S, Kondo H (2005) Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agric For Meteorol 134:4–16

    Article  Google Scholar 

  • Saito M, Ito A, Maksyutov S (2014) Optimization of a prognostic biosphere model for terrestrial biomass and atmospheric CO2 variability. Geosci Model Dev 7:1829–1840

    Article  CAS  Google Scholar 

  • Saitoh TM, Nagai S, Yoshino J, Muraoka H, Saigusa N, Tamagawa I (2012) Functional consequences of differences in canopy phenology for the carbon budgets of two cool-temperate forest type: simulations using the NCAR/LSM model and validation using tower flux and biometric data. Eurasian J For Res 15:19–30

    Google Scholar 

  • Saitoh TM, Nagai S, Yoshino J, Kondo H, Tamagawa I, Muraoka H (2015) Effects of canopy phenology on deciduous overstory and evergreen understory carbon budgets in a cool-temperate forest ecosystem under ongoing climate change. Ecol Res 30:267–277

    Article  Google Scholar 

  • Sasai T, Saigusa N, Nasahara KN, Ito A, Hashimoto H, Nemani R, Hirata R, Ichii K, Takagi K, Saitoh TM, Ohta T, Murakami K, Yamaguchi Y, Oikawa T (2011) Satellite-driven estimation of terrestrial carbon flux over far East Asia with 1-km grid resolution. Remote Sensing of Environment 115:1758–1771

    Article  Google Scholar 

  • Sato T, Kimura F, Kitoh A (2007) Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J Hydrol 333:144–154

    Article  Google Scholar 

  • Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P, Jones CD, Prentice IC, Woodward FI (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Global Change Biol 14:2015–2039

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Note -475

  • Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob Change Biol 19:45–63

    Article  Google Scholar 

  • Tenhunen J, Geyer R, Adiku S, Reichstein M, Tappeiner U, Bahn M, Cernusca A, Dinh NQ, Kolcun O, Lohila A, Otieno D, Schmidt M, Schmitt M, Wang Q, Wartinger M, Wohlfahrt (2009) Influences of changing land use and CO2 concentration on ecosystem and landscape level carbon and water balances in mountainous terrain of the Stubai Valley, Austria. Global and Planetary Change 67:29–43

    Article  Google Scholar 

  • Way DA, Montgomery RA (2015) Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ 38:1725–1736

    Article  Google Scholar 

  • Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669–688

    Article  Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497

    CAS  Google Scholar 

  • Wythers KR, Reich PB, Tjoelker MG, Bolstad PB (2005) Foliar respiration acclimation to temperature and temperature variable Q10 alter ecosystem carbon balance. Glob Change Biol 11:435–449

    Article  Google Scholar 

  • Yamamoto S, Koizumi H (2005) Long-term carbon exchange at Takayama site, a cool-temperature deciduous forest in Japan. Agric For Meteorol 134:1–3

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. H. Kondo, Dr. S. Murayama (National Institute of Advanced Industrial Science and Technology) and Dr. N. Saigusa (National Institute for Environmental Studies) for providing observed meteorological data at TKY and estimated GPP, RE, and NEP based on flux measurement. This research was supported by the Japanese Alps Inter-University Cooperative Project (JALPS) Fund of the Ministry of Education, Culture, Science and Technology (MEXT) of Japan, and the Next Generation World-Leading Researchers (NEXT Program, Principal Investigator Dr. H. Muraoka) Fund of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Kuribayashi.

Electronic supplementary material

Supplement 1

(DOCX 74 kb)

Supplement 2

(DOCX 29 kb)

Supplement 3

(DOCX 33 kb)

Supplement 4

(DOCX 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuribayashi, M., Noh, NJ., Saitoh, T.M. et al. Current and future carbon budget at Takayama site, Japan, evaluated by a regional climate model and a process-based terrestrial ecosystem model. Int J Biometeorol 61, 989–1001 (2017). https://doi.org/10.1007/s00484-016-1278-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1278-9

Keywords

Navigation