Skip to main content

Advertisement

Log in

Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a “double mulching” system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % (P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well “collaborative” status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an effective farming model in alleviating water shortage issues experiencing in water shortage areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Kaisi MM, Yin X (2005) Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. J Environ Qual 34:437–445. doi:10.2134/jeq2005.0437

    Article  CAS  Google Scholar 

  • Briassoulis D (2006) Mechanical behaviour of biodegradable agricultural films under real field conditions. Polym Degrad Stabil 91:1256–1272. doi:10.1016/j.polymdegradstab.2005.09.016

    Article  CAS  Google Scholar 

  • Bu LD, Zhu L, Liu JL, Luo SS, Chen XP, Li SQ (2013) Source–sink capacity responsible for higher maize yield with removal of plastic film. Agron J 105(3):591–598

    Article  Google Scholar 

  • Chai Q, Gan Y, Turner NC, Zhang RZ, Yang C, Niu Y, Siddique KH (2014a) Water-saving innovations in Chinese agriculture. Adv Agro 126:149–201

    Article  Google Scholar 

  • Chai Q, Qin A, Gan Y, Yu A (2014b) Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron Sustain Dev 34:535–543. doi:10.1007/s13593-013-0161-x

    Article  CAS  Google Scholar 

  • Chen C, Lei C, Deng A, Qian C, Hoogmoed W, Zhang W (2011) Will higher minimum temperatures increase corn production in northeast China? An analysis of historical data over 1965–2008. Agric For Meteorol 151:1580–1588. doi:10.1016/j.agrformet.2011.06.013

    Article  Google Scholar 

  • Choi BH, Chung KY (1997) Effect of polythene-mulching on flowering and yield of groundnut in Korea. Arachis Newsletter 17:49–51

    Google Scholar 

  • Duhr E, Dubas A (1990) Effect of covering the soil with plastic film on the dynamics of plant development and yield of maize sown on different dates. Prace Komisji Nauk Rolniczych i Komisji Nauk Leśnych 69:9–18

    Google Scholar 

  • Elliott JA, Efetha AA (1999) Influence of tillage and cropping system on soil organic matter, structure and infiltration in a rolling landscape. Can J Soil Sci 79:457–463. doi:10.4141/S98-075

    Article  Google Scholar 

  • Fan ZL, Chai Q, Huang GB, Yu AZ, Huang P, Yang CH, Tao ZQ, Liu HL (2012) Yield and water consumption characteristics of wheat/maize intercropping with reduced tillage in an oasis region. Eur J Agron 25121:1–7. doi:10.1016/j.eja.2012.10.010

    Google Scholar 

  • Fang QX, Ma L, Green TR, Yu Q, Wang TD, Ahuja LR (2010a) Water resources and water use efficiency in the north China plain: current status and agronomic management options. Agr Water Manage 97:1102–1116. doi:10.1016/j.agwat.2010.01.008

    Article  Google Scholar 

  • Fang S, Li H, Sun Q, Chen L (2010b) Biomass production and carbon stocks in poplar-crop intercropping systems: a case study in northwestern Jiangsu, China. Agroforest Syst 79:213–222. doi:10.1007/s10457-010-9307-x

    Article  Google Scholar 

  • Fernández-Aparicio M, Amri M, Kharrat M, Rubiales D (2010) Intercropping reduces mycosphaerella pinodes severity and delays upward progress on the pea plant. Crop Prot 29:744–750. doi:10.1016/j.cropro.2010.02.013

    Article  Google Scholar 

  • Gan Y, Liang C, Chai Q, Lemke RL, Campbell CA, Zentner RP (2014) Improving farming practices reduces the carbon footprint of spring wheat production. Nat Commun 5:5012. doi:10.1038/ncomms6012

    Article  Google Scholar 

  • Ghosh P, Dayal D, Bandyopadhyay K, Mohanty M (2006) Evaluation of straw and polythene mulch for enhancing productivity of irrigated summer groundnut. Field Crops Res 99:76–86. doi:10.1016/j.fcr.2006.03.004

    Article  Google Scholar 

  • Govaerts B, Sayre KD, Ceballos-Ramirez JM, Luna-Guido ML, Limon-Ortega A, Deckers J, Dendooven L (2006) Conventionally tilled and permanent raised beds with different crop residue management effects on soil C and N dynamics. Plant Soil 280:143–155. doi:10.1007/s11104-005-2854-7

    Article  CAS  Google Scholar 

  • Guang XZ, Wei D (2002) The groundwater crisis and sustainable agriculture in northern China. Water Eng Manag 149(4):13–16

    Google Scholar 

  • Huang G, Zhang R, Li GD, Li L, Chan K, Heenan DP, Chen W, Unkovich MJ, Robertson MJ, Cullis BR (2008) Productivity and sustainability of a spring wheat-field pea rotation in a semi-arid environment under conventional and conservation tillage systems. Field Crops Res 107:43–55. doi:10.1016/j.fcr.2007.12.011

    Article  Google Scholar 

  • Jin H, Hongwen L, Kuhn N, Xuemin Z, Wenying L (2007) Soil loosening on permanent raised-beds in arid northwest China. Soil Till Res 97:172–183. doi:10.1016/j.still.2007.09.016

    Article  Google Scholar 

  • Jourdain D, Scopel E, Affholder F (2001) The impact of conservation tillage on the productivity and stability of maize cropping systems: A case study in western Mexico. International Maize and Wheat Improvement Center, CIMMYT Economics Working Paper 01–02. CIMMYT, Mexico. 20 pp.

  • Kang S, Zhang J (2004) Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. J Exp Bot 55:2437–2446

    Article  CAS  Google Scholar 

  • Kuo SF, Ho SS, Liu CW (2006) Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan irrigation association, Taiwan. Agr Water Manage 82:433–451. doi:10.1016/j.agwat.2005.08.002

    Article  Google Scholar 

  • Li LL, Huang GB, Zhang RZ, Bill B, Guangdi L, Kwong YC (2011) Benefits of conservation agriculture on soil and water conservation and its progress in China. Agr Sci China 10:850–859. doi:10.1016/S1671-2927(11)60071-0

    Article  Google Scholar 

  • Li R, Hou X, Jia Z, Han Q, Yang B (2012) Effects of rainfall harvesting and mulching technologies on soil water, temperature, and maize yield in Loess Plateau region of China. Soil Res 50(2):105–113. doi:10.1071/SR11331

    CAS  Google Scholar 

  • Lichter K, Govaerts B, Six J, Sayre KD, Deckers J, Dendooven L (2008) Aggregation and C and N contents of soil organic matter fractions in a permanent raised-bed planting system in the highlands of central Mexico. Plant Soil 305(1–2):237–252. doi:10.1007/s11104-008-9557-9

    Article  CAS  Google Scholar 

  • Liu XL, Li SQ, Wang J, Song QH (2001) Review of clear plastic film mulch on spring wheat in semi-arid loess plateau. Acta bot. Boreali-Occidential Sinica 21:198–206

    CAS  Google Scholar 

  • Monneveux P, Quillerou E, Sanchez C, Lopez-Cesati J (2006) Effect of zero tillage and residues conservation on continuous maize cropping in a subtropical environment (Mexico). Plant Soil 279(1–2):95–105. doi:10.1007/s11104-005-0436-3

    Article  CAS  Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490(7419):254–257. doi:10.1038/nature11420

    Article  CAS  Google Scholar 

  • Munz S, Graeff-Hönninger S, Lizaso JI, Chen Q, Claupein W (2014) Modeling light availability for a subordinate crop within a strip-intercropping system. Field CropS Res 155:77–89. doi:10.1016/j.fcr.2013.09.020

    Article  Google Scholar 

  • Plauborg F (1995) Evaporation from bare soil in a temperate humid climate—measurement using micro-lysimeters and time domain reflectometry. Agric For Meteorol 76:1–17. doi:10.1016/0168-1923(94)02215-6

    Article  Google Scholar 

  • Qin AZ, Huang GB, Chai Q, Yu AZ, Huang P (2013a) Grain yield and soil respiratory response to intercropping systems on arid land. Field Crops Res 144:1–10. doi:10.1016/j.fcr.2012.12.005

    Article  Google Scholar 

  • Qin J, He H, Luo S, Li H (2013b) Effects of rice-water chestnut intercropping on rice sheath blight and rice blast diseases. Crop Prot 43:89–93. doi:10.1016/j.cropro.2012.09.009

    Article  Google Scholar 

  • Ramakrishna A, Tam HM, Wani SP, Long TD (2006) Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res 95(2):115–125. doi:10.1016/j.fcr.2005.01.030

    Article  Google Scholar 

  • Scarascia-Mugnozza G, Schettini E, Vox G, Malinconico M, Immirzi B, Pagliara S (2006) Mechanical properties decay and morphological behaviour of biodegradable films for agricultural mulching in real scale experiment. Polym Degrad Stabil 91:2801–2808. doi:10.1016/j.polymdegradstab.2006.02.017

    Article  CAS  Google Scholar 

  • Schiermeier Q (2014) The parched planet: water on tap. Nature 509(7505):326. doi:10.1038/510326a

    Article  Google Scholar 

  • Shinner S, Nelson W, Wang R (1994) Effects of residue-free band width on soil temperature and water content. Transactions of the ASAE 37(1):39–49

    Article  Google Scholar 

  • Tiwari K, Singh A, Mal P (2003) Effect of drip irrigation on yield of cabbage (Brassica oleracea L. var. capitata) under mulch and non-mulch conditions. Agr Water Manage 58:19–28. doi:10.1016/S0378-3774(02)00084-7

    Article  Google Scholar 

  • Ussiri DA, Lal R (2009) Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Till Res 104:39–47. doi:10.1016/j.still.2008.11.008

    Article  Google Scholar 

  • Wang YP, Li XG, Hai L, Siddique KHM, Gan Y, Li FM (2014) Film fully-mulched ridge-furrow cropping affects soil biochemical properties and maize nutrient uptake in a rainfed semi-arid environment. Soil Sci Plant Nutr 60:486–498. doi:10.1080/00380768.2014.909709

    Article  CAS  Google Scholar 

  • Xie R, Li S, Li X, Jin Y, Wang K, Chu Z, Gao S (2007) The analysis of conservation tillage in China-conservation tillage and crop production: reviewing the evidence. Sci Agric Sin 40(9):1914–1924

    Google Scholar 

  • Xie ZK, Wang YJ, Li FM (2005) Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China. Agr Water Manage 75:71–83. doi:10.1016/j.agwat.2004.12.014

    Article  Google Scholar 

  • Yang F, Huang S, Gao R, Liu W, Yong T, Wang X, Wu X, Yang W (2014) Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio. Field Crops Res 155:245–253. doi:10.1016/j.fcr.2013.08.011

    Article  Google Scholar 

  • Zhou LM, Jin SL, Liu CA, Xiong YC, Si JT, Li XG, Gan YT, Li FM (2012) Ridge-furrow and plastic-mulching tillage enhances maize-soil interactions: opportunities and challenges in a semiarid agroecosystem. Field Crops Res 126:181–188. doi:10.1016/j.fcr.2011.10.010

    Article  Google Scholar 

  • Zhou LM, Li FM, Jin SL, Song Y (2009) How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid loess plateau of China. Field Crops Res 113(1):41–47. doi:10.1016/j.fcr.2009.04.005

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the research grants provided by National Natural Science Foundation of China (31301283, 31360323), National Key Technology R&D Program (2012BAD14B10), and Outstanding Talent Culture Project of Gansu Agricultural University. We would also like to thank all the staff at the Wuwei Experimental Station of Gansu Agricultural University for technical assistance in carrying out the field experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Chai or Yantai Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, W., Feng, F., Zhao, C. et al. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments. Int J Biometeorol 60, 1423–1437 (2016). https://doi.org/10.1007/s00484-016-1134-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1134-y

Keywords

Navigation