Skip to main content
Log in

Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Combining the strengths of an advanced mathematical model of human physiology and a thermal manikin is a new paradigm for simulating thermal behaviour of humans. However, the forerunners of such adaptive manikins showed some substantial limitations. This project aimed to determine the opportunities and constraints of the existing thermal manikins when dynamically controlled by a mathematical model of human thermal physiology. Four thermal manikins were selected and evaluated for their heat flux measurement uncertainty including lateral heat flows between manikin body parts and the response of each sector to the frequent change of the set-point temperature typical when using a physiological model for control. In general, all evaluated manikins are suitable for coupling with a physiological model with some recommendations for further improvement of manikin dynamic performance. The proposed methodology is useful to improve the performance of the adaptive manikins and help to provide a reliable and versatile tool for the broad research and development domain of clothing, automotive and building engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anttonen H et al (2004) Thermal manikin measurements—exact or not? Int J Occup Saf Ergon 10:291–300

    Article  Google Scholar 

  • ASTM F1291-05 (2005) Standard test method for measuring the thermal insulation of clothing using a heated manikin. ASTM International, West Conshohocken

  • ASTM F2370-10 (2010) Standard test method for measuring the evaporative resistance of clothing using a sweating manikin. ASTM International, West Conshohocken

  • Blood K, Burke R (2010) Further validation of the model-controlled Newton thermal manikin against historical human studies. Paper presented at the 8th International Meeting for Manikins and Modelling, Victoria, Canada, pp 22–26

    Google Scholar 

  • Bouskill LM, Havenith G, Kuklane K, Parsons KC, Withey WR (2002) Relationship between clothing ventilation and thermal insulation. Aihaj 63:262–268. doi:10.1080/15428110208984712

    Article  CAS  Google Scholar 

  • Burke R, Curran A, Hepokoski M (2009) Integrating an active physiological and comfort model to the Newton sweating thermal manikin. Paper presented at the International Conference on Environmental Ergonomics, Boston, USA, pp 2–7

    Google Scholar 

  • Curran A, Peck S, Hepokoski M, Burke R (2014) Physiological model control of a sweating thermal manikin. Paper presented at the 10th Manikin and Modelling Meeting, Tampere, Finland, pp 7–9

    Google Scholar 

  • Fan JT, Qian XM (2004) New functions and applications of Walter, the sweating fabric manikin. Eur J Appl Physiol 92:641–644. doi:10.1007/s00421-004-1134-1

    Article  Google Scholar 

  • Farrington R, Rugh J, Bharathan D, Burke R (2004) Use of a thermal manikin to evaluate human thermoregulatory responses in transient, non-uniform, thermal environments Society of Automotive Engineers International 2004-01-2345

  • Fiala D, Havenith G, Broede P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56:429–441. doi:10.1007/s00484-011-0424-7

    Article  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972

    CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159. doi:10.1007/s004840100099

    Article  CAS  Google Scholar 

  • Foda E, Siren K (2012a) Design strategy for maximizing the energy-efficiency of a localized floor-heating system using a thermal manikin with human thermoregulatory control. Energy Build 51:111–121. doi:10.1016/j.enbuild.2012.04.019

    Article  Google Scholar 

  • Foda E, Siren K (2012b) A thermal manikin with human thermoregulatory control: implementation and validation. Int J Biometeorol 56:959–971. doi:10.1007/s00484-011-0506-6

    Article  Google Scholar 

  • Gao C, Kuklane K, Wang F, Holmer I (2012) Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective. Indoor Air 22:523–530. doi:10.1111/j.1600-0668.2012.00778.x

    Article  CAS  Google Scholar 

  • Havenith G et al (2008) Apparent latent heat of evaporation from clothing: attenuation and “heat pipe” effects. J Appl Physiol 104:142–149. doi:10.1152/japplphysiol.00612.2007

    Article  Google Scholar 

  • Havenith G et al (2013) Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin. J Appl Physiol 114:778–785. doi:10.1152/japplphysiol.01271.2012

    Article  Google Scholar 

  • Holmer I, Nilsson H (1995) Heated manikins as a tool for evaluating clothing. Ann Occup Hyg 39:809–818. doi:10.1016/0003-4878(95)00041-0

    Article  Google Scholar 

  • ISO9920 (2007) Ergonomics of the thermal environment—estimation of thermal insulation and water vapour resistance of a clothing ensemble.

  • ISO15831 (2004) Clothing-physiological effects—measurement of thermal insulation by means of a thermal manikin.

  • Keiser C, Becker C, Rossi RM (2008) Moisture transport and absorption in multilayer protective clothing fabrics. Text Res J 78:604–613. doi:10.1177/0040517507081309

    Article  CAS  Google Scholar 

  • Konarska M, Soltynski K, Sudol-Szopinska I, Chojnacka A (2007) Comparative evaluation of clothing thermal insulation measured on a thermal manikin and on volunteers. Fibres Text East Eur 15:73–79

    CAS  Google Scholar 

  • Kuklane K, Heidmets S, Johansson T (2006) Improving thermal comfort in an orthopaedic aid: better Boston brace for scoliosis patients. Paper presented at 6th International Thermal Manikin and Modelling Meeting, Hong Kong, China, 2006. pp 345–346

  • McCullough EA The use of thermal manikins to evaluate clothing and environmental factors. Paper presented at 10th Conference on Environmental Ergonomics, Fukuoka, Japan, 2002. pp 427–430

  • McCullough EA, Jones B, Huck J (1985) A comprehensive database for estimating clothing insulation. ASHRAE Transactions 91:29–47

    Google Scholar 

  • Niedermann R, Psikuta A, Rossi RM (2014) Heat flux measurements for use in physiological and clothing research. Int J Biometeorol 58:1069–1075. doi:10.1007/s00484-013-0697-0

    Article  CAS  Google Scholar 

  • Nilsson HO (2004) Comfort climate evaluation with thermal manikin methods and computer simulation models. University of Gävle and the Swedish National Institute for Working Life

  • Psikuta A (2009) Development of an ‘artificial human’ for clothing research. De Montfort University

  • Psikuta A et al (2012) Validation of the Fiala multi-node thermophysiological model for UTCI application. Int J Biometeorol 56:443–460. doi:10.1007/s00484-011-0450-5

    Article  Google Scholar 

  • Psikuta A, Niedermann R, Rossi RM (2014) Effect of ambient temperature and attachment method on surface temperature measurements. Int J Biometeorol 58:877–885. doi:10.1007/s00484-013-0669-4

    Article  Google Scholar 

  • Psikuta A, Richards M, Fiala D (2008) Single-sector thermophysiological human simulator. Physiol Meas 29:181–192. doi:10.1088/0967-3334/29/2/002

    Article  Google Scholar 

  • Psikuta A, Wang L-C, Rossi RM (2013) Prediction of the physiological response of humans wearing protective clothing using a thermophysiological human simulator. J Occup Environ Hyg 10:222–232. doi:10.1080/15459624.2013.766562

    Article  Google Scholar 

  • Redortier B, Voelcker T (2010) Implementation of thermo-physiological control on a multi-zone manikin. Paper presented at the 8th Manikin and Modelling Meeting, Victoria, BC, Canada, pp 22–26

    Google Scholar 

  • Richards MGM, McCullough EA (2005) Revised interlaboratory study of sweating thermal manikins including results from the sweating agile thermal manikin. Performance of Protective Clothing: Global Needs and Emerging Markets: 8th Symposium. doi:10.1520/stp12595s

  • Rintamaki H (2007) Human responses to cold. Alaska Med 49:29–31

    Google Scholar 

  • Tanabe S, Arens EA, Bauman FS, Zang H, Madsen TL (1994) Evaluating thermal environments by using a thermal manikin with controlled skin surface temperature. ASHRAE Transactions 100:39–48

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Matthew Morrissey from Empa for the fruitful discussions on improving the calibration protocol for the manikin SAM and consultation on scientific English writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Psikuta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Psikuta, A., Kuklane, K., Bogdan, A. et al. Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body. Int J Biometeorol 60, 435–446 (2016). https://doi.org/10.1007/s00484-015-1041-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-1041-7

Keywords

Navigation