Skip to main content
Log in

Forecasting plant phenology: evaluating the phenological models for Betula pendula and Padus racemosa spring phases, Latvia

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

A historical phenological record and meteorological data of the period 1960−2009 are used to analyse the ability of seven phenological models to predict leaf unfolding and beginning of flowering for two tree species—silver birch Betula pendula and bird cherry Padus racemosa—in Latvia. Model stability is estimated performing multiple model fitting runs using half of the data for model training and the other half for evaluation. Correlation coefficient, mean absolute error and mean squared error are used to evaluate model performance. UniChill (a model using sigmoidal development rate and temperature relationship and taking into account the necessity for dormancy release) and DDcos (a simple degree-day model considering the diurnal temperature fluctuations) are found to be the best models for describing the considered spring phases. A strong collinearity between base temperature and required heat sum is found for several model fitting runs of the simple degree-day based models. Large variation of the model parameters between different model fitting runs in case of more complex models indicates similar collinearity and over-parameterization of these models. It is suggested that model performance can be improved by incorporating the resolved daily temperature fluctuations of the DDcos model into the framework of the more complex models (e.g. UniChill). The average base temperature, as found by DDcos model, for B. pendula leaf unfolding is 5.6 °C and for the start of the flowering 6.7 °C; for P. racemosa, the respective base temperatures are 3.2 °C and 3.4 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aasa A (2005) Changes in phenological time series in Estonia and Central and Easter Europe 1951 – 1998. Relationship with air temperature and atmospheric circulation: PHD thesis. University of Tartu, Tartu

  • Aasa A, Jaagus J, Ahas R, Sepp M (2004) The influence of atmospheric circulation on plant phenological phases in central and eastern Europe. Int J Biometeorol 24:1551–1564

    Google Scholar 

  • Ahas R (1999) Long-term phyto-, ornitho- and ichthyophenological time-series analyses in Estonia. Int J Biometeorol 42:119–123

    Article  Google Scholar 

  • Ahas R, Aasa A (2001) Impact of landscape features on spring phenological phases of maple and bird cherry in Estonia. Landsc Ecol 16(5):437–451

    Article  Google Scholar 

  • Ahas R, Aasa A (2006) The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. Int J Biometeorol 51:17–26

    Article  Google Scholar 

  • Ahas R, Aasa A, Menzel A, Fedotova VG, Scheifinger H (2002) Changes in European spring phenology. Int J Clim 22:1727–1738

    Article  Google Scholar 

  • Ahas R, Aasa A, Silm S, Roosaare J (2005) Seasonal indicators and seasons of Estonian landscapes. Landsc Res 30(2):173–191

    Article  Google Scholar 

  • Cannell MGR, Smith RI (1983) Thermal time, chill days and prediction of budburst in Picea sitchensis. J Appl Ecol 20:951–963

    Article  Google Scholar 

  • Cardina J, Herms CP, Herms DA, Forcella F (2007) Evaluating phenological indicators for predicting giant foxtail (Setaria faberi) emergence. Weed Sci 55:455–464

    Article  CAS  Google Scholar 

  • Carlson JD, Hancock JF Jr (1991) A methodology for determining suitable heat-unit requirements for harvest of highbush blueberry. J Amer Soc Hort Sci 116(5):774–779

    Google Scholar 

  • Cenci CA, Ceschia M (2000) Forecasting of the flowering time for wild species observed in Guidonia, central Italy. Int J Biometeorol 44:88–96

    Article  CAS  Google Scholar 

  • Chuine I (2000) A unifed model for budburst of trees. J Theor Biol 207:337–347

    Article  CAS  Google Scholar 

  • Chuine I, Kramer K, Hänninen H (2003) Plant development models. In: Schwartz MD (ed) Phenology: an integrative environmental science. Kluwer Academic Publishers, Netherland, pp 305–333

    Google Scholar 

  • Chung U, Mack L, Yun JI, Kim SH (2011) Predicting the timing of cherry blossoms in Washington, DC and Mid-Atlantic States in response to climate change. PLoS ONE 6(11):e27439. doi:10.1371/journal.pone.0027439

    Article  CAS  Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing (vol 2). Vienna, Austria

  • Črepinšek Z, Kajfež-Bogataj L (2006) Phenology – indicator of plant response to climate regime. Water Observation and Information System for Decision Support, Ohrid

  • Fu YH, Campioli M, Deckmyn G, Janssens I (2012) The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation. PLoS One 7(10):1–9. doi:10.1371/journal.pone.0047324

    Google Scholar 

  • Grišule G (2008) Fenoloģisko rādītāju mainības raksturs. In: Kļaviņš RM (ed) Klimata mainība un globālā sasilšana. Latvijas Universitāte, Rīga, pp 100–105

    Google Scholar 

  • Grišule G, Briede A (2007) Phenological time series in Latvia as climate change indicators. In: Kļaviņš M (ed) Climate change in Latvia. Latvijas Universitāte, Rīga, pp 144–154

    Google Scholar 

  • Groza E, Dragiļeva M, Bitāne M (2012) Using digital repeat photography in phenology: case study in Riga. In: Kļaviņš M, Briede A (eds) Climate change in Latvia and adaption to it. University of Latvia Press, Rīga, pp 32–43

    Google Scholar 

  • Häkkinen R (1999) Statistical evaluation of bud development theories: application to bud burst of Betula pendula leaves. Tree Physiol 19(9):613–618

    Article  Google Scholar 

  • Hanninen H, Tanino K (2011) Tree seasonality in a warming climate. Trends Plant Sci 16(8):412–416

    Article  Google Scholar 

  • Herms DA (2004) Using degree-days and plant phenology to predict pest activity. In: Krischik V, Davidson J (eds) IPM (Integrated Pest Management) of Midwest Landscapes, Minnesota Agricultural Experiment Station Publication 58-07645, 49–59

  • Hunter AF, Lechowicz MJ (1992) Predicting the timing of budburst in temperate trees. J Appl Ecol 29:597–604

    Article  Google Scholar 

  • Ide R, Oguma H (2010) Use of digital cameras for phenological observations. Ecol Inform 5(5):339–347

    Article  Google Scholar 

  • Integrated Pest Management (IPM) (2012) Agriculture and Natural Resources, University of California. Available: http://www.ipm.ucdavis.edu/GENERAL/whatisipm.html

  • Irvine P (2011) Using a logistic phenology model with improved degree-day accumulators to forecast emergence of pest grasshoppers. M. Thesis. University of Lethbridge, Canada

  • Jaagus J, Ahas R (2000) Space-time variations of climatic seasons and their correlation with the phenological development of nature in Estonia. Clim Res 15:207–219

    Article  Google Scholar 

  • Kalvāne G (2011) Changes in phenological events and their influencing climatic factors: PhD Thesis. University of Latvia, Riga (in Latvian with summary in English)

  • Kalvāne G (2012) Changes of the phenological seasons in Latvia. In: Kļaviņš M, Briede A (eds) Climate change in Latvia and adaptation to it. University of Latvia Press, Rīga, pp 107–118

    Google Scholar 

  • Kalvāne G, Romanovskaja D, Briede A, Bakšiene E (2009) Influence of the climate change to the phenological changes in Latvia and Lithuania. Clim Res 39:209–219

    Article  Google Scholar 

  • Kellomäki S, Hänninen H, Kolström M (1995) Computations on frost damage to Scots pine under climatic warming in boreal conditions. Ecol Appl 5:42–52

    Article  Google Scholar 

  • Kumral NA, Kovanci B, Akbudak B (2008) Using degree-day accumulations and host phenology for predicting larval emergence patterns of the olive psyllid, Euphyllura phillyreae. J Pest Sci 81:63–69

    Article  Google Scholar 

  • Ladányi M, Persely S, Nyéki J, Szabó Z (2010) From phenology models to risk indicator analysis. Agric Inform 1(2):8–16

    Google Scholar 

  • Linderholm HW (2006) Growing season changes in the last century. Agr Forest MeTeorol 137:1–14

  • Luomajoki A (1999) Differences in the climatic adaptation of silver birch (Betula pendula) and downy birch (B. pubescens) in Finland based on male flowering phenology. Acta Forestalia Fennica 263:35

    Google Scholar 

  • McMaster GS, Wilhelm WW (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291–300

    Article  Google Scholar 

  • Miller P, Lanier W, Brandt S (2001) Using growing degree days to predict plant phases. MontGuide fact sheet MT200103 AG 7/2001, Montana State University, Extension Service, E-5, 8 p

  • Murray MB, Cannell MGR, Smith RI (1989) Date of budburst of fifteen tree species in Britain following climate warming. J Appl Ecol 26(2):693–700

    Article  Google Scholar 

  • Neil K, Wu J (2006) Effects of urbanization on plant flowering phenology: a review. Urban Ecosystems 9:243–257

    Article  Google Scholar 

  • Nizinski JJ, Saugier B (1988) A model of leaf budding and development for a mature Quercus forest. J Appl Ecol 25:643–652

    Article  Google Scholar 

  • OARDC [s.a.] Growing degree days and phenology for Ohio. The Ohio State University. Available: http://www.oardc.ohio-state.edu/gdd/about_this_page.htm. Accessed 27 Apr 2014

  • Pau S, Wolkovich EM, Cook BI, Davies TJ, Kraft NJB, Bolmgren K, Betancourt JL, Cleland EE (2011) Predicting phenology by integrating ecology, evolution and climate science. Glob Change Biol 17:3633–3643

    Article  Google Scholar 

  • Richardson AD, Schenck Bailey A, Dennyz EG, Wayne Martin C, O’Keefe J (2006) Phenology of a northern hardwood forest canopy. Glob Change Biol 12:1174–1188

    Article  Google Scholar 

  • Rodriguez-Rajo FJ, Frenguelli G, Jato MV (2003) Effect of air temperature on forecasting the start of the Betula pollen season at two contrasting sites in the south of Europe (1995-2001). Int J Biometeorol 47:117–125

    CAS  Google Scholar 

  • Roetzer T, Wittenzeller M, Haeckel H, Nekovar J (2000) Phenology in central Europe—differences and trends of spring phenophases in urban and rural areas. Int J Biometeorol 44:60–66

    Article  CAS  Google Scholar 

  • Romanovskaja D (2003) Development regularities of the plants-indicators of the beginning of phenological seasons in Lithuania during 1961-2000. Agriculture. Sci Artic 84(4):150–164, in Lithuanian with summary in English

    Google Scholar 

  • Romanovskaja D (2004) Klimato šiljimo įtaka fenologinių sezonų trukmei Lietuvos teritorijoje. Influence of climate warming on duration of phenological seasons on territories of Lithuania. Žemes ūkio mokslai 25–37

  • Romanovskaja D, Bakšiene E (2007) Influence of the thermal mode on seasonal phenological phenomena in Lithuania. EKOLOGIJA 1:15–20

    Google Scholar 

  • Romanovskaja D, Bakšiene E (2008) Phenological investigations in Lithuania. In: Nekovar J et al (eds). The history and current status of plant phenology in Europe. Brussels, COST, p 105–109

  • Romanovskaja D, Bakšiene E (2009) Influence of climate warming on beginning of flowering of apple tree (Malus domestica Borkh.) in Lithuania. Agron Res 7(1):87–96

    Google Scholar 

  • Romanovskaja D, Kalvane G, Briede A, Bakšiene E (2009) Influence of the climate warming on the changes of the length of phenological seasons in Lithuania and Latvia. Zemdirbyste-Agriculture 96(4):218–231 (in Lithuanian with summary in English)

    Google Scholar 

  • Rötzer T, Grote R, Pretzsch H (2004) The timing of bud burst and its effect on tree growth. Int J Biometeorol 48(3):109–118

    Article  Google Scholar 

  • Ruml M, Vulić T (2005) Importance of phenological observations and predictions in agriculture. J Agric Sci 50(2):217–225

    Google Scholar 

  • Schaber J (2002) Phenology in Germany in the 20th century: methods, analyses and models: PHD Thesis. University of Potsdam

  • Schaber J (2012) pheno: Auxiliary functions for phenological data analysis. R package version 1.6

  • Schaber J, Badeck FW (2003) Physiology-based phenology models for forest tree species in Germany. Int J Biometeorol 47:193–201. doi:10.1007/s00484-003-0171-5

    Article  Google Scholar 

  • Siljamo P, Sofiev M, Ranta H, Linkosalo T, Kubin E, Ahas R, Genikhovich E, Jatczak K, Jato V, Nekovář J, Minin A, Severova E, Shalaboda V (2008) Representativeness of point-wise phenological Betula data collected in different parts of Europe. Glob Ecol Biogeogr 17:489–502. doi:10.1111/j.1466-8238.2008.00383.x

    Article  Google Scholar 

  • Snyder RL, Spano D, Cesaraccio C, Duce P (1999) Determining degree-day thresholds from field observations. Int J Biometerol 42:177–182

    Article  Google Scholar 

  • Sofiev M, Siljamo P, Ranta H, Linkosalo T, Jaeger S, Rasmussen A, Rantio-Lehtimaki A, Severova E, Kukkonen J (2013) A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. Int J Biometeorol 57:45–58. doi:10.1007/s00484-012-0532-z

    Article  CAS  Google Scholar 

  • Soltani A, Sinclair TR (2012) Modeling physiology of crop development, growth and yield. CAB International, Wallingford, 322 p

    Book  Google Scholar 

  • Song Y, Coop LB, Omeg M, Riedl H (2003) Development of a phenology model for predicting western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), emergence in the mid Columbia area of the western United States. J Asia-Pac Entom 6(2):187–192

    Article  Google Scholar 

  • Takeris S (2005) Eksperimentālo rezultātu matemātiskā apstrāde. Skaitļojamās mašīnas un programmēšana. Lekciju materiāls. Rīga, Latvijas Universitāte, Fizikālās ķīmijas katedra. (in Latvian)

  • Tīrums M, Bitāne M, Kalvāne G (2012) Variability of spring bioclimatic parameters and influencing factors in Snepele 1947-2007. Sci Papers Univ Latvia Earth Environ Sci 785:21–41 (In Latvian with summary in English)

    Google Scholar 

  • Veriankaite L, Šauliene I, Bukantis A (2010) The modeling of climate change influence on plant flowering shift in Lithuania. Zemdirbyste-Agriculture 97(1):41–48

    Google Scholar 

  • Vlad V, Stefan V, Ion V, Ion N, Motelica DM (2008) Researches regarding the prognosis of the flowering phase and honey potential yield of sunflower crops. Bulletin of UASVM Cluj-Napoca. Agriculture 65(1):339–344

    Google Scholar 

  • Wielgolaski FE (1999) Starting dates and basic temperatures in phenological observations of plants. Int J Biometeorol 42:158–168

    Article  Google Scholar 

  • Wilson LT, Barnett WW (1983) Degree-days: An aid in crop and pest management. Calif Agric 37:4–7

    Google Scholar 

  • Xiang Y, Gubian S, Suomela B, Hoeng J (2013) Generalized simulated annealing for global optimization: the GenSA Package. Rjournalgithubio 5(1):13–28

    Google Scholar 

  • Zalom FG, Goodell PB, Wilson LT, Barnett WW, Bentley WJ (1983) Degree-Days: The calculation and use of heat units in pest management. Leaflet No.21373, Division of Agriculture and Natural Resources, University of California, Berkeley, CA, 94720

  • Zavalloni C, Andresen JA, Flore JA (2006) Phenological models of flower bud phases and fruit growth of ‘Montmorency’ sour cherry based on growing degree-day accumulation. J Amer Soc Hortic Sci 131:601–607

    Google Scholar 

  • Zhao M, Peng C, Xiang W, Deng X, Tian D, Zhou X, Yu G, He H, Zhao Z (2013) Plant phenological modeling and its application in global climate change research: overview and future challenges. Environ Rev 21:1–14

    Article  Google Scholar 

Download references

Acknowledgment

This research is supported by the European Union through the European Social Fund Mobilitas grant no. MJD309.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andis Kalvāns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalvāns, A., Bitāne, M. & Kalvāne, G. Forecasting plant phenology: evaluating the phenological models for Betula pendula and Padus racemosa spring phases, Latvia. Int J Biometeorol 59, 165–179 (2015). https://doi.org/10.1007/s00484-014-0833-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-014-0833-5

Keywords

Navigation