Skip to main content
Log in

Application of redundancy analysis for aerobiological data

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

An aerobiological survey was conducted through five consecutive years (2006–2010) at Worcester (England). The concentration of 20 allergenic fungal spore types was measured using a 7-day volumetric spore trap. The relationship between investigated fungal spore genera and selected meteorological parameters (maximum, minimum, mean and dew point temperatures, rainfall, relative humidity, air pressure, wind direction) was examined using an ordination method (redundancy analysis) to determine which environmental factors favoured their most abundance in the air and whether it would be possible to detect similarities between different genera in their distribution pattern. Redundancy analysis provided additional information about the biology of the studied fungi through the results of the Spearman’s rank correlation. Application of the variance inflation factor in canonical correspondence analysis indicated which explanatory variables were auto-correlated and needed to be excluded from further analyses. Obtained information will be consequently implemented in the selection of factors that will be a foundation for forecasting models for allergenic fungal spores in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angelosante Bruno A, Pace L, Tomassetti B, Coppola E, Verdecchia M, Pacioni G, Visconti G (2007) Estimation of fungal spore concentrations associated to meteorological parameters. Aerobiologia 23:221–228

    Article  Google Scholar 

  • Belsley DA, Kuh E, Welsch RE (1980) Regression diagnostics: identifying influential data and sources of collinearity. Wiley, New York

    Book  Google Scholar 

  • Bolboacă S-D, Jäntschi L (2006) Pearson versus Spearman, Kendall’s tau correlation analysis on structure-activity relationships of biologic active compounds. LJS 9:179–200

    Google Scholar 

  • Burch M, Levetin E (2002) Effects of meteorological conditions on spore plumes. Int J Biometeorol 46:107–117

    Article  CAS  Google Scholar 

  • Croux C, Dehon C (2010) Influence function of the Spearman and Kendall correlation measures. SMA 19:497–515

    Google Scholar 

  • D’Amato G, Spieksma FTM (1995) Aerobiologic and clinical aspects of mould allergy in Europe. Allergy 50:870–877

    Article  Google Scholar 

  • del Mar Trigo M, Toro FJ, Recio M, Cabezudo B (2000) A statistical approach to comparing the results from different aerobiological stations. Grana 39:252–258

    Article  Google Scholar 

  • Driscoll P, Lecky F (2001) Article 6. An introduction to hypothesis testing. Parametric comparison of two groups—1. EMJ BMJ 18:124–130

    Article  CAS  Google Scholar 

  • Green BJ, Sercombe JK, Tovey ER (2005) Fungal fragments and undocumented conidia function as new aeroallergen sources. J Allergy Clin Immunol 115:1043–1048

    Article  Google Scholar 

  • Greene WH (1993) Econometric analysis. Macmillan, New York

    Google Scholar 

  • Grinn-Gofroń A (2011) Airborne Aspergillus and Penicillium in the atmosphere of Szczecin, (Poland) (2004–2009). Aerobiologia 27:67–76

    Article  Google Scholar 

  • Grinn-Gofroń A, Bosiacka B (2012) The advanced statistical methods in aerobiological studies. Acta Agrobot 65:69–74

    Article  Google Scholar 

  • Grinn-Gofroń A, Mika A (2008) Selected airborne allergenic fungal spores and meteorological factors in Szczecin, Poland, 2004–2006. Aerobiologia 24:89–97

    Article  Google Scholar 

  • Grinn-Gofroń A, Rapiejko P (2009) Occurrence of Cladosporium spp. and Alternaria spp. spores in Western, Northern and Central-Eastern Poland in 2004–2006 and relation to some meteorological factors. Atmos Res 93:747–758

    Article  Google Scholar 

  • Grinn-Gofroń A, Strzelczak A (2011) The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air. Int J Biometeorol 55:235–241

    Article  Google Scholar 

  • Grinn-Gofroń A, Strzelczak A (2013) Changes in concentration of Alternaria and Cladosporium spores during summer storms. Int J Biometeorol 57:759–768

    Article  Google Scholar 

  • Groß J (2003) Variance inflation factors. R News 3:13–15

    Google Scholar 

  • Haines JH, Beatriz E, Muilenberg M, Gallup J, Levetin E (2003) Mycology of the air. A workshop manual for sampling and identifying airborne fungus spores. Pan-American Aerobiology Association, Tucson

    Google Scholar 

  • Hasnain SM (1993) Influence of meteorological factors on the air spora. Grana 32:184–188

    Article  Google Scholar 

  • Hernández Trejo F, Muñoz Rodríguez AF, Tormo Molina R, Silva Palacios I (2012) Airborne ascospores in Mérida (SW Spain) and the effect of rain and other meteorological parameters on their concentration. Aerobiologia 28:13–26

    Article  Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Hirst J (1952) An automatic volumetric spore trap. Ann App Biol 39:257–265

    Article  Google Scholar 

  • Hollins PD, Kettlewell PS, Atkinson MD, Stephenson DB, Corden JM, Millington WM, Mullins J (2004) Relationships between airborne fungal spore concentration of Cladosporium and the summer climate at two sites in Britain. Int J Biometeorol 48:137–141

    Article  CAS  Google Scholar 

  • Lacey J, Allitt U (1995) Airborne pollen and spores, a guide to trapping and counting. The British Aerobiology Federation, Harpenden

    Google Scholar 

  • Lacey WE, West J (2006) The air spora. A manual for catching and identifying airborne biological particles. Springer, Dordrecht

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Legendre P, Oksanen J, ter Braak CJF (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2:269–277

    Article  Google Scholar 

  • Li D-W, Kendrick B (1994) Functional relationships between airborne fungal spores and environmental factors in Kitchener-Waterloo, Ontario, as detected by Canonical correspondence analysis. Grana 33:166–176

    Article  Google Scholar 

  • Li D-W, Kendrick B (1995) A year-round study on functional relationships of airborne fungi with meteorological factors. Int J Biometeorol 39:74–80

    Article  CAS  Google Scholar 

  • Li D-W, Kendrick B (1996) Functional and causal relationships between indoor and outdoor airborne fungi. Can J Bot 74:194–209

    Article  Google Scholar 

  • Mimet A, Pellissier V, Quénol H, Aguejdad R, Dubreuil V, Rozé F (2009) Urbanisation induces early flowering: evidence from Platanus acerifolia and Prunus cerasus. Int J Biometeorol 53:287–298

    Article  CAS  Google Scholar 

  • Nikkels AH, Terstegge P, Spieksma FTM (1996) Ten types of microscopically identifiable airborne fungal spores at Leiden, the Netherlands. Aerobiologia 12:107–112

    Article  Google Scholar 

  • O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690

    Article  Google Scholar 

  • Obolewski K, Strzelczak A (2009) Epiphytic fauna inhibiting Stratiotes aloides in a new lake of the Słowiński National Park (Smołdzińskie lake, Poland). Ecohydrol Hydrobiol 9:257–267

    Article  Google Scholar 

  • Ogden EC, Raynor GS, Hayes JV, Lewis DM, Haines JH (1974) Manual for sampling airborne pollen. Hafner, New York

    Google Scholar 

  • Oksanen J, Minchin PR (1997) Instability of ordination results under changes in input data order: explanations and remedies. J Vegetation Sci 8:447–454

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Community ecology package. http://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed 25 Sep 2013

  • Oliveira M, Ribeiro H, Delgado JL, Abreu I (2009) The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. Int J Biometeorol 53:61–73

    Article  CAS  Google Scholar 

  • Puc M (2012) Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland). Int J Biometeorol 56:395–401

    Article  Google Scholar 

  • Recio M, del Mar TM, Docampo S, Melgar M, García-Sánchez J, Bootello L, Cabezudo B (2012) Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: Alternaria and Cladosporium. Int J Biometeorol 56:983–991

    Article  Google Scholar 

  • Richardson MJ (1996) The occurrence of airborne Didymella spores in Edinburgh. Mycol Res 100:213–216

    Article  Google Scholar 

  • Rodríguez-Rajo FJ, Jato V, Fernández-González M, Jesus Aira M (2010) The use of aerobiological methods for forecasting Botrytis spore concentrations in a vineyard. Grana 49:56–65

    Article  Google Scholar 

  • Sabariego S, Díaz de la Guardia C, Alba F (2000) The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain). Int J Biometeorol 44:1–5

    Article  CAS  Google Scholar 

  • Simon-Nobbe B, Denk U, Pöll V, Rid R, Breitenbach M (2008) The spectrum of fungal allergy. Inte Arch Allergy Immunol 145:58–86

    Article  Google Scholar 

  • Simpson GL (2013) Functions for generating restricted permutations of data. http://cran.r-project.org/web/packages/permute/permute.pdf. Accessed 25 Sep 2013

  • Southworth D (1974) Introduction to the biology of airborne fungal spores. Ann Allergy 32:1–22

    Google Scholar 

  • Stennet PJ, Beggs PJ (2004) Alternaria spores in the atmosphere of Sydney, Australia, and relationships with meteorological factors. Int J Biometeorol 49:98–105

    Article  Google Scholar 

  • Stępalska D, Wołek J (2005) Variations in fungal spore concentrations of selected taxa associated to weather conditions in Cracow, Poland, in 1997. Aerobiologia 21:43–52

    Article  Google Scholar 

  • Stępalska D, Wołek J (2009) The estimation of fungal spore concentrations using two counting methods. Acta Agrobot 62:117–123

    Article  Google Scholar 

  • Stępalska D, Grinn-Gofroń A, Piotrowicz K (2012) Occurrence of Didymella ascospores in western and southern Poland in 2004–2006. Aerobiologia 28:153–159

    Article  Google Scholar 

  • Teixeira Gonçalves FL, Bauer H, Alves Cardoso MG, Pukinskas S, Matos D, Melhem M, Puxbaum H (2010) Indoor and outdoor atmospheric fungal spores in the São Paulo metropolitan area (Brazil): species and numeric concentrations. Int J Biometeorol 54:347–355

    Article  Google Scholar 

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • ter Braak CJF (1995) Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology, 1st edn. Cambridge University Press, Cambridge, pp 91–173

    Chapter  Google Scholar 

  • ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317

    Article  Google Scholar 

  • Wagner HH (2004) Direct multi-scale ordination with canonical correspondence analysis. Ecology 85:342–351

    Article  Google Scholar 

Download references

Acknowledgements

This project has been funded by the National Pollen and Aerobiology Research Unit at the University of Worcester and conducted within the framework of the doctoral studies of the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Sadyś.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadyś, M., Strzelczak, A., Grinn-Gofroń, A. et al. Application of redundancy analysis for aerobiological data. Int J Biometeorol 59, 25–36 (2015). https://doi.org/10.1007/s00484-014-0818-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-014-0818-4

Keywords

Navigation