Skip to main content

Advertisement

Log in

Thermographic evaluation of climatic conditions on lambs from different genetic groups

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

In production systems the characterization of genetic resources in relation to their capacity to respond to environmental conditions is necessary. The objective of this study was to evaluate the use of infrared thermography for separation of animals from different genetic groups and determine which phenotypic traits are important for climatic adaptation. A total of 126 suckling lambs from four different genetic groups (Santa Inês – SI, Bergamasca – B, Bergamasca X Santa Inês – BS, and Ile de France X Santa Inês – IL) were used. The animals were divided into two groups, one housed and another in an outside paddock. Thermograph photographs were taken at four-hour intervals over three full days. Temperatures of the nose, skull, neck, fore and rear flanks and rump were measured, as well as coat depth, the density and length of hairs, reflectance and color. The daily temperature range during the experimental period was more than 20°C, with animals experiencing heat (12 h to 15 h) and cold (24 h to 4 h) stress. The three main phenotypic traits that influenced genetic group separation were hair density, height of coat, and length of hairs. Thermograph temperatures were able to detect different responses of the genetic groups to the environment. Therefore, infrared thermography is a promising technique to evaluate the response of animals to the environment and to differentiate between genetic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander G, Lynch JJ, Mottershead BE, Donnelly JB (1980) Reduction in lamb mortality by means of grass wind-breaks: results of a five-year study. Proceedings of 13th Australian Society of Animal Production, pp 329–332

  • Baêta FC, Souza CF (1997) Ambiência em edificações rurais: conforto térmico. UFV, Viçosa/MG

    Google Scholar 

  • Bond J, McDowell RE (1972) Reproductive performance and physiological responses of beef females as affected by a prolonged high environmental temperature. J Anim Sci 35:820–829

    Google Scholar 

  • Burgos JJ (1979) Clima tropical y subtropical. In: Helman MB (ed) Ganadería tropical. El Ateneo, Buenos Aires, pp 1–28

    Google Scholar 

  • Cardoso CC, Lima FG, Costa G, Ribeiro CS, Oliveira N, Cardoso D, Laudares K, Junior R, Oliveira BEM, Louvandini H, McManus C (2010) Tolerância ao calor em animais mestiços de ovinos. Proceedings of 47ª Reunião Anual da Sociedade Brasileira de Zootecnia, Salvador, pp 1–3

  • Castanheira M, Paiva SR, Louvandini H, Landim A, Fiorvanti MCS, Dallago BS, Correa PS, McManus C (2010) Use of heat tolerance traits in discriminating between groups of sheep in central Brazil. Trop Anim Health Prod 42:1821–1828. doi:10.1007/s11250-010-9643-x

    Article  Google Scholar 

  • Chimineau P (1993) Médio ambiente y reproducción animal. World Anim Rev 77:2–14

    Google Scholar 

  • Forrest RH, Hickford JGH, Wynyard J, Merrick N, Hogan A, Frampton C (2006) Polymorphism at the beta(3)-adrenergic receptor (ADRB3) locus of Merino sheep and its association with lamb mortality. Anim Genet 37(5):465–468

    Article  CAS  Google Scholar 

  • Foster LA, Fourie PJ, Neser FWC (2009) Effect of heat stress on six beef breeds in the Zastron district: The significance of breed, coat colour and coat type. S Afr J Anim Sci 39:224–228

    Google Scholar 

  • Fraser O, Ritchie JSD, Fraser AF (1975) The term "stress" in a veterinary context. Br Vet J 131(6):653–662

    CAS  Google Scholar 

  • Gughan JB, Mader TL, Holt SM, Lisle A (2008) A new heat load index for feedlot cattle. J Anim Sci 86:226–234. doi:10.2527/jas.2007-0305

    Article  Google Scholar 

  • Habeeb ALM, Murray LFM, Kamal TH (1992) Farm animals and the environment. CAB, Cambridge

    Google Scholar 

  • Holmes CW (1981) A note on the protection provided by the hair coat or fleece of the animal against the thermal effects of simulated rain. Anim Prod 32:225–226

    Article  Google Scholar 

  • Holst GC (2000) Common sense approach to thermal imaging. SPIE Optical Engineering Press, Washington

    Google Scholar 

  • Intergovernmental Panel on Climate Change – IPCC (2007) The physical science basis, 4th assessment report. Cambridge University Press, Cambridge

    Google Scholar 

  • Lefcourt AM, Adams WR (1996) Radiotelemetry measurement of body temperatures of feedlot steers during summer. J Anim Sci 74:2633–2640

    CAS  Google Scholar 

  • Maia ASC, Silva RG, Andrade PC (2009) Efeitos da temperatura e da movimentação do ar sobre o isolamento térmico do velo de ovinos em câmara climática. Rev Bras Zootec 38(1):104–108. doi:10.1590/S1516-35982009000100014

    Article  Google Scholar 

  • Marai I, Haeeb A (2009) Buffalo's biological functions as affected by heat stress—a review. Livest Sci 127:89–109

    Article  Google Scholar 

  • Marai IFM, El-Darawany AA, Fadiel A, Abdel-Hafez MAM (2007) Physological traits as affected by heat stress in sheep: a review. Small Rumin Res 71:1–12. doi:10.1016/j.smallrumres.2006.10.003

    Article  Google Scholar 

  • McCutcheon SN, Holmes CW, McDonald MF (1981) The starvation-exposure syndrome and neonatal lamb mortality: a review. Proceedings of 14th New Zealand Society of Animal Production, pp 209–217

  • McManus C, Paludo GR, Louvandini H, Gugel R, Sasaki LCB, Paiva SR (2009) Heat tolerance in Brazilian sheep: physiological and blood parameters. Trop Anim Health Prod 41:95–101. doi:10.1007/s11250-008-9162-1

    Article  Google Scholar 

  • McManus C, Louvandini H, Gugel R, Sasaki LCB, Bianchini E, Bernal FEM, Paiva SR, Paim TP (2011) Skin and coat traits in sheep in Brazil and their relation with heat tolerance. Trop Anim Health Prod 43:121–126. doi:10.1007/s11250-010-9663-6

    Article  Google Scholar 

  • Monty DE, Kelley LM, Rice WR (1991) Acclimatization of St.-Croix, Karakul and Rambouillet sheep to intense and dry summer heat. Small Rumin Res 4:379–392. doi:10.1016/0921-4488(91)90083-3

    Article  Google Scholar 

  • Nóbrega JE Jr, Riet-Correa F (2005) Mortalidade perinatal de ovinos. Pesqui Vet Bras 25(3):171–178

    Article  Google Scholar 

  • Paiva SR, Silvério VC, Egito AA, McManus C, Faria DA, Mariante AS, Castro SR, Albuquerque MSM, Dergam JA (2005) Genetic variability of the Brazilian hair sheep breeds. Pesq Agrop Brasileira 40(9):887–893. doi:10.1590/S0100-204X200500090008

    Article  Google Scholar 

  • Radostits OM, Gay CC, Blood DC, Hinchcliff KW (2002) Clínica veterinária. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  • Silva RG (2000) Introdução à bioclimatologia animal. Nobel, São Paulo

    Google Scholar 

  • Titto EAL (1998) Clima: influência na produção de leite. Proceedings of 1º Simpósio Brasileiro de Ambiência na Produção de Leite, Piracicaba, pp 10–23

  • Westland S (2003) Review of the CIE system of colorimetry and its use in dentistry. J Esthet Restor Dent 15(1):5–12

    Article  Google Scholar 

  • Young BA, Degen AA (1981) Thermal influences on ruminants. In: Clark JA (ed) Environmental aspects of housing for animal production. Butterworths, London, pp 167–180

    Google Scholar 

Download references

Acknowledgements

To CNPq and INCT-Pecuária (CNPq-FAPEMIG) for research scholarships, as well as FAP-DF and FINATEC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago do Prado Paim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

do Prado Paim, T., Borges, B.O., de Mello Tavares Lima, P. et al. Thermographic evaluation of climatic conditions on lambs from different genetic groups. Int J Biometeorol 57, 59–66 (2013). https://doi.org/10.1007/s00484-012-0533-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-012-0533-y

Keywords

Navigation