Skip to main content

Advertisement

Log in

Changing climate in Hungary and trends in the annual number of heat stress days

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Global climate change can have serious direct effects on animal health and production through heat stress. In Hungary, the number of heat stress days per year (YNHD), i.e., days when the temperature humidity index (THI) is above a specific comfort threshold, has increased in recent years based on observed meteorological data. Between 1973 and 2008, the countrywide average increase in YNHD was 4.1% per year. Climate scenarios based on regional climate models (RCM) were used to predict possible changes in YNHD for the near future (2021–2050) relative to the reference period (1961–1990). This comparison shows that, in Hungary, the 30-year mean of YNHD is expected to increase by between 1 and 27 days, depending on the RCM used. Half of the scenarios investigated in this study predicted that, in large parts of Hungary, YNHD will increase by at least 1 week. However, the increase observed in the past, and that predicted for the near future, is spatially heterogeneous, and areas that currently have large cattle populations are expected to be affected more severely than other regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adin G, Gelman A, Solomon R, Flamenbaum I, Nikbachat M, Yosef E, Zenou A, Shamay A, Feuermann Y, Mabjeesh SJ, Miron J (2009) Effects of cooling dry cows under heat load conditions on mammary gland enzymatic activity, intake of food and water, and performance during the dry period and after parturition. Livest Sci 124:189–195. doi:10.1016/j.livsci.2009.01.014

    Article  Google Scholar 

  • Armstrong DV (1994) Heat stress interaction with shade and cooling. J Dairy Sci 77:2044–2050

    Article  CAS  PubMed  Google Scholar 

  • Avendaño-Reyes L, Alvarez-Valenzuela FD, Correa-Calderón A, Saucedo-Quintero JS, Robinson PH, Fadel JG (2006) Effect of cooling holstein cows during the dry period on postpartum performance under heat stress conditions. Livest Sci 105:198–206

    Article  Google Scholar 

  • Bianca W (1962) Relative importance of dry- and wet-bulb temperatures in causing heat stress in cattle. Nature 195:251–252

    Article  CAS  PubMed  Google Scholar 

  • Bohmanova J, Misztal I, Cole JB (2007) Temperature-humidity indices as indicators of milk production losses due to heat stress. J Dairy Sci 90:1947–1956

    Article  CAS  PubMed  Google Scholar 

  • Bouraoui R, Lahmar M, Majdoub A, Djemali M, Belyea R (2002) The relationship of temperature-humidity index with milk production of dairy cows in a mediterranean climate. Anim Res 51:479–491

    Article  Google Scholar 

  • Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM—the climate version of LM: Brief description and long-term applications. COSMO Newsletter 6:225–235, Available at: http://clm.gkss.de/dokumente/upload/3a8e8_COSMOnewsLetter06_clm.pdf

    Google Scholar 

  • Casimiro E, Calheiros J, Santos FD, Kovats S (2006) National assessment of human health effects of climate change in portugal: approach and key findings. Environ Health Perspect 114:1950–1956

    PubMed  Google Scholar 

  • Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35:L20709.1–L20709.6. doi:10.1029/2008GL035694

    Article  Google Scholar 

  • Collins M, Booth BBB, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2006) Towards quantifying uncertainty in transient climate change. Clim Dyn 27:127–147. doi:10.1007/s00382-006-0121-0

    Article  Google Scholar 

  • Correa-Calderon A, Armstrong D, Ray D, DeNise S (2004) Thermoregulatory responses of holstein and Brown Swiss heat-stressed dairy cows to two different cooling systems. Int J Biometeorol 48:142–148

    Article  PubMed  Google Scholar 

  • de Bruijn C, van Meijgaard E (2005) Verification of HIRLAM with ECMWF physics compared with HIRLAM reference versions. HIRLAM Technical Report 63, 39 pp

  • Diffenbaugh NS, Pal JS, Giorgi F, Gao X (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett 34:L11706.1–L11706.6. doi:10.1029/2007GL030000

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model—a contribution to the French Community Climate Modeling. Clim Dyn 10:249–266

    Article  Google Scholar 

  • ENSEMBLES (2009) Regional Climate Model database of ENSEMBLES project. Available at: http://ensembles-eu.metoffice.com, Accessed 15 March 2009

  • Ferris R, Ellis RH, Wheeler TR, Hadley P (1998) Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann Bot 82:631–639

    Article  Google Scholar 

  • Finch VA (1986) Body temperature in beef cattle: its control and relevance to production in the tropics. J Anim Sci 62:531–542

    Google Scholar 

  • Furevik T, Bentsen M, Drange H, Kindem IKT, Kvamstø NG, Sorteberg A (2003) Description and evaluation of the bergen climate model: ARPEGE coupled with MICOM. Clim Dyn 21:27–51. doi:10.1007/s00382-003-0317-5

    Article  Google Scholar 

  • Gaughan JB, Mader TL, Holt SM, Josey MJ, Rowan KJ (1999) Heat tolerance of Boran and Tuli crossbred steers. J Anim Sci 77:2398–2405

    CAS  PubMed  Google Scholar 

  • Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Google Scholar 

  • Gelman A, Rubin D (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–511

    Article  Google Scholar 

  • Gloster J, Mellor PS, Burgin L, Sanders C, Carpenter S (2007) Will bluetongue come on the wind to the United Kingdom in 2007? Vet Rec 160:422–426

    CAS  PubMed  Google Scholar 

  • Hammond AC, Olson TA, Chase CC, Bowers EJ, Randel RD, Murphy CN, Vogt DW, Tewolde A (1996) Heat tolerance in two tropically adapted Bos taurus breeds, Senepol and Romosinuano, compared with Brahman, Angus, and Hereford cattle in Florida. J Anim Sci 74:295–303

    CAS  PubMed  Google Scholar 

  • Hansen P (2004) Physiological and cellular adaptations of Zebu cattle to thermal stress. Anim Reprod Sci 82–83:349–360

    Article  PubMed  Google Scholar 

  • Haugen JE, Haakenstad H (2006) Validation of HIRHAM version 2 with 50 km and 25 km resolution. RegClim General Technical Report No. 9., 159–173, Available at: http://regclim.met.no/results/gtr9.pdf

  • Ines AVM, Hansen JW (2005) Bias correction of daily gcm rainfall for crop simulation studies. Agric For Meteorol 138:44–53

    Article  Google Scholar 

  • Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    Article  Google Scholar 

  • Kampstra P (2008) Beanplot: a boxplot alternative for visual comparison of distributions. J Stat Softw 28:1–9

    Google Scholar 

  • Kjellström E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, Rummukainen M, Ullerstig A, Willén U, Wyser K (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). Reports Meteorology and Climatology, SMHI, SE-60176 Norrköping 108:54, Available at: http://www.smhi.se/sgn0106/if/biblioteket/rapporter_pdf/RMK108.pdf

  • Kosgey IS, Kahi AK, Van Arendonk JAM (2005) Valuation of closed adult nucleus multiple ovulation and embryo transfer and conventional progeny testing breeding schemes for milk production in tropical crossbred cattle. J Dairy Sci 88:1582–1594

    Article  CAS  PubMed  Google Scholar 

  • Lee-Ann J, Woolridge M, Frank MJ, Miraglia M, McQuatters-Gollop A, Tirado C, Clarke R, Friel M (2008) Climate change: Implications for food safety. Tech. rep., FAO, Available at: ftp://ftp.fao.org/docrep/fao/010/i0195e/i0195e00.pdf

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) Winbugs—a bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  • Malayer JR, Hansen PJ (1990) Differences between Brahman and Holstein cows in heat-shock induced alterations of protein synthesis and secretion by oviducts and uterine endometrium. J Anim Sci 68:266–280

    CAS  PubMed  Google Scholar 

  • Michna P (2006) RNetCDF: R Interface to NetCDF Datasets. R package version 1.2-1. http://cran.r-project.org/web/packages/RNetCDF/index.html

  • Misra V (2007) Addressing the issue of systematic errors in a regional climate model. J Climate 20:801–818

    Article  Google Scholar 

  • Morse D, De Lorenzo MA, Wilcox CJ, Collier RJ, Natzke RP, Bray DR (1988) Climatic effects on occurence of clinical mastitis. J Dairy Sci 71:848–853

    Article  CAS  PubMed  Google Scholar 

  • Morton JM, Tranter WP, Mayer DG, Jonsson NN (2007) Effects of environmental heat on conception rates in lactating dairy cows: critical periods of exposure. J Dairy Sci 90:2271–2278

    Article  CAS  PubMed  Google Scholar 

  • Nakicenovic N, Swart R (2000) Intergovernmental panel on climate change special report on emissions scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • National Research Council (1971) A guide to environmental reasearch on animals. Tech. rep., National Research Council, Washington, DC

  • NCDC (2009) Global surface summary of the day dataset. Available at: ftp://ftp.ncdc.noaa.gov/pub/data/gsod/, accessed 15 March 2009

  • New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Climate 13:2217–2238

    Article  Google Scholar 

  • Owens M (2006) The definitive guide to SQLite. Apress, Berkeley

    Google Scholar 

  • Padilla L, Matsui T, Kamiya Y, Kamiya M, Tanaka M, Yano H (2006) Heat stress decreases plasma vitamin C concentration in lactating cows. Livest Sci 101:300–304

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha P, Rosmeri SLC, Steiner AL (2005) Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–140

    Article  Google Scholar 

  • Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691

    Article  Google Scholar 

  • Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5:9–13

    Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2008) coda: Output analysis and diagnostics for MCMC. Available at: http://cran.r-project.org/web/packages/coda/index.html

  • Poumadére M, Mays C, Le Mer S, Blong R (2005) The 2003 heat wave in France: dangerous climate change here and now. Risk Anal 25:1483–1494

    Article  PubMed  Google Scholar 

  • Purse BV, Mellor PS, Rogers DJ, Samuel AR, Mertens PPC, Baylis M (2005) Climate change and the recent emergence of bluetongue in Europe. Nat Rev Microbiol 3:171–181

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, Available at: http://www.R-project.org

  • Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci USA 104:10288–10293

    Article  CAS  PubMed  Google Scholar 

  • Ravagnolo O, Misztal I (2000) Genetic component of heat stress in dairy cattle, parameter estimation. J Dairy Sci 83:2126–2130

    Article  CAS  PubMed  Google Scholar 

  • Ravangolo O, Misztal I (2002) Effects of heat stress on nonreturn rate in holsteins: genetic analyses. J Dairy Sci 85:3092–3100

    Article  Google Scholar 

  • Reiczigel J, Solymosi N, Könyves L, Maróti-Agóts A, Kern A, Bartyik J (2009) Examination of heat stress caused milk production loss by the use of temperature-humidity indices. Magy Allatorv 131:137–144

    Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation modell ECHAM5, Part I: Model description. Tech. Rep. 349, Max Planck Institute for Meteorology, Hamburg, Germany, Available at: http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf

  • Rowlingson B, Diggle P (2008) splancs: Spatial and Space-Time Point Pattern Analysis. Available at: http://www.maths.lancs.ac.uk/∼rowlings/Splancs/

  • Schulzweida U, Kornblueh L, Quast R (2009) CDO User’s Guide. Climate Data Operators Version 1.3.1. MPI for Meteorology, Available at: http://www.mpimet.mpg.de/fileadmin/software/cdo

  • Seif SM, Johnson HD, Lippincott AC (1979) The effects of heat exposure (31°C) on Zebu and Scottish Highland cattle. Int J Biometeorol 23:9–14

    Article  CAS  PubMed  Google Scholar 

  • Smith TR, Chapa A, Willard S, Herndon C Jr, Williams RJ, Crouch J, Riley T, Pogue D (2006) Evaporative tunnel cooling of dairy cows in the Southeast. i: Effect on body temperature and respiration rate. J Dairy Sci 89:3904–3914

    Article  CAS  PubMed  Google Scholar 

  • Smoyer-Tomic KE, Kuhn R, Hudson A (2003) Heat wave hazards: an overview of heat wave impacts in Canada. Nat Hazards 28:463–485

    Article  Google Scholar 

  • Solymosi N, Harnos A, Reiczigel J (2008) SQLiteMap: package to manage vector graphical maps using SQLite. In: The R User Conference 2008, Book of Abstracts, Technische Universität Dortmund, Germany, p 171, Available at: http://www.r-project.org/conferences/useR-2008/abstracts/_Abstracts.pdf

  • Sonntag D (1990) Important new values of the physical constants of 1986, vapour pressure formulations based on the IST-90 and psychrometer formulae. Z Meteorol 70:340–344

    Google Scholar 

  • Sturtz S, Ligges U, Gelman A (2005) R2WinBUGS: a package for running WinBUGS from R. JSS 12:1–16

    Google Scholar 

  • Tereshchenko I, Filonov A, Gallegos A, Monzón C, Rodríguez R (2002) El Niño 1997–98 and the hydrometeorological variability of Chapala, a shallow tropical lake in Mexico. J Hydrol 264:133–146

    Article  Google Scholar 

  • Thom EC (1959) The discomfort index. Weatherwise 12:57–59

    Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  CAS  PubMed  Google Scholar 

  • Welchext WT, Wiersma F, Stoa GH, Rollins F (1965) Hot weather relief methods for livestock production. Am Soc Agric Eng Paper No. 65-4015, St. Joseph, MI

  • West JW (1994) Interaction of energy and bovine somatotropin with heat stress. J Dairy Sci 77:2091–2102

    Article  CAS  PubMed  Google Scholar 

  • West JW (2003) Effects of heat-stress on production in dairy cattle. J Dairy Sci 86:2131–2144

    Article  CAS  PubMed  Google Scholar 

  • West JW, Mullinix BG, Bernard JK (2003) Effects of hot, humid weather on milk temperature, dry intake, and milk yield of lactating dairy cows. J Dairy Sci 86:232–242

    Article  CAS  PubMed  Google Scholar 

  • White MA, Diffenbaugh NS, Jones GV, Pal JS, Giorgi F (2006) Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc Natl Acad Sci USA 130:11217–11222

    Article  CAS  Google Scholar 

  • Wittmann EJ, Baylis M (2000) Climate change: effects on culicoides–transmitted viruses and implications for the UK. Vet J 160:107–117

    CAS  PubMed  Google Scholar 

  • Yousef MK (1985) Stress physiology in livestock. CRC, Boca Raton

    Google Scholar 

Download references

Acknowledgments

In memory of Prof. Zsolt Harnos, who initiated our work. Observation-based meteorological data were obtained from the National Climatic Data Center. Regional climate model based data (except scenario No. 7) the ENSEMBLES data were used in this work funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539) whose support is gratefully acknowledged. Research leading to results of scenario No. 7 has been supported by the CECILIA project of the European Union Nr. 6 program (contract no. GOCE-037005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Solymosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solymosi, N., Torma, C., Kern, A. et al. Changing climate in Hungary and trends in the annual number of heat stress days. Int J Biometeorol 54, 423–431 (2010). https://doi.org/10.1007/s00484-009-0293-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-009-0293-5

Keywords

Navigation