Skip to main content
Log in

Examining Ambrosia pollen episodes at Poznań (Poland) using back-trajectory analysis

  • Original Article
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The pollen grains of Ambrosia spp. are considered to be important aeroallergens in parts of southern and central Europe. Back-trajectories have been analysed with the aim of finding the likely sources of Ambrosia pollen grains that arrived at Poznań (Poland). Temporal variations in Ambrosia pollen at Poznań from 1995–2005 were examined in order to identify Ambrosia pollen episodes suitable for further investigation using back-trajectory analysis. The trajectories were calculated using the transport model within the Lagrangian air pollution model, ACDEP (Atmospheric Chemistry and Deposition). Analysis identified two separate populations in Ambrosia pollen episodes, those that peaked in the early morning between 4 a.m. and 8 a.m., and those that peaked in the afternoon between 2 p.m. and 6 p.m.. Six Ambrosia pollen episodes between 2001 and 2005 were examined using back-trajectory analysis. The results showed that Ambrosia pollen episodes that peaked in the early morning usually arrived at Poznań from a southerly direction after passing over southern Poland, the Czech Republic, Slovakia and Hungary, whereas air masses that brought Ambrosia pollen to Poznań during the afternoon arrived from a more easterly direction and predominantly stayed within the borders of Poland. Back-trajectory analysis has shown that there is a possibility that long-range transport brings Ambrosia pollen to Poznań from southern Poland, the Czech Republic, Slovakia and Hungary. There is also a likelihood that Ambrosia is present in Poland, as shown by the arrival of pollen during the afternoon that originated primarily from within the country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Belmonte J, Vendrell M, Roure JM, Vidal J, Botey J, Cadahía A (2000) Levels of Ambrosia pollen in the atmospheric spectra of Catalan aerobiological stations. Aerobiologia 16(1):93–99

    Article  Google Scholar 

  • Brandt J, Christensen JH, Frohn LM, Berkowicz R, Palmgren F (2000) The DMU-ATMI THOR air pollution forecast system - system description, NERI Technical Report No. 321, National Environmental Research Institute, P.O. Box 358, Frederiksborgvej 399, DK-4000 Roskilde, Denmark: p 60

  • Brandt J, Christensen JH, Frohn LM, Berkowicz R (2001a) Operational air pollution forecasts from regional scale to urban street scale. Part 1: system description. Phys Chem Earth Pt B 26(10):781–786

    Article  Google Scholar 

  • Brandt J, Christensen JH, Frohn LM, Berkowicz R (2001b) Operational air pollution forecasts from regional scale to urban street scale. Part 2: performance evaluation. Phys Chem Earth Pt B 26(10):825–830

    Google Scholar 

  • Brandt J, Christensen JH, Frohn LM, Palmgren F, Berkowicz R, Zlatev Z (2001c) Operational air pollution forecasts from european to local scale. Atmospheric Environment 35(Suppl 1):S91–S98

    Article  CAS  Google Scholar 

  • Cecchi L, Morabito M, Domeneghetti MP, Crisci A, Onorari M, Orlandini S (2006) Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Ann Allergy Asthma Immunol 96(1):86–91

    PubMed  Google Scholar 

  • Comtois P (1998) Ragweed (Ambrosia sp.): the Phoenix of allergophytes. 6th International Congress on Aerobiology. Satellite Symposium Proceedings: Ragweed in Europe, Perugia, Italy, ALK Abelló

  • Corden J, Stach A, Millington W (2002) A comparison of Betula pollen seasons at two European sites; Derby, United Kingdom and Poznan, Poland (1995–1999). Aerobiologia 18:45–53

    Article  Google Scholar 

  • Dahl A, Strandhede S-O, Wihl J-A (1999) Ragweed-An allergy risk in Sweden? Aerobiologia 15(4):293–297

    Article  Google Scholar 

  • Ellermann T, Hertel O, Munies C, Kemp K (2002) Atmospheric Deposition 2001, NOVA 2003 (In Danish: Atmosfærisk deposition. NOVA 2003), NERI Technical Report, no. 418, National Environmental Research Institute, P.O. Box 358, Frederiksborgvej 399, DK-4000 Roskilde, Denmark, p 82

  • Faegri K, Iversen J (1992) Textbook of Pollen Analysis. John Wiley and Sons, Chichester

    Google Scholar 

  • GUS Glówny Urzad Statystyczny (2001) Rocznik Statystyczny Poznania. http://www.stat.gov.pl/urzedy/poznan/publikacje/rocznik_stolicy_woj/ludnosc/03m05_01.pdf

  • Hart ML, Wentworth JE, Bailey JP (1994) The effects of trap height and weather variables on recorded pollen concentration at Leicester. Grana 33:100–103

    Google Scholar 

  • Hertel O, Christensen J, Runge EH, Asman WAH, Berkowicz R, Hovmand MF, Hov Ø (1995) Development and testing of a new variable scale air pollution model-ACDEP. Atmospheric Environment 29(11):1267–1290

    Article  CAS  Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39(2):257–265

    Article  Google Scholar 

  • Hjelmroos M (1991) Evidence of long distance transport of Betula pollen. Grana 30:215–228

    Google Scholar 

  • Hjelmroos M (1992) Long-distance transport of Betula pollen grains and allergic symptoms. Aerobiologia 8:231–236

    Article  Google Scholar 

  • Jackowiak B (1993) Atlas of distribution of vascular plants in Poznan. Publications of the Department of Plant Taxonomy of Adam Mickiewicz University, No 2, Poznan

    Google Scholar 

  • Jäger S (1998) Global aspects of ragweed in Europe. 6th International Congress on Aerobiology. Satellite Symposium Proceedings: Ragweed in Europe, Perugia, Italy, ALK Abelló

  • Jäger S (2000) Ragweed (Ambrosia) sensitisation rates correlate with the amount of inhaled airborne pollen. A 14-year study in Vienna, Austria. Aerobiologia 16(1):149–153

    Article  Google Scholar 

  • Járai-Komlódi M (2000) Some details about ragweed airborne pollen in Hungary. Aerobiologia 16(2):291–294

    Article  Google Scholar 

  • Jones B, Barnes C, Portnoy JM, Hu F (2006) Diurnal variation of airborne ragweed pollen in a metropolitan area-an 8 year perspective. J Allergy Clin Immunol 117(2):S29, Supp

    Article  Google Scholar 

  • Laaidi K, Laaidi M (1999) Airborne pollen of Ambrosia in Burgundy (France) 1996–1997. Aerobiologia 15(1):65–69

    Article  Google Scholar 

  • Laaidi M, Thibaudon M, Besancenot J-P (2003) Two statistical approaches to forecasting the start and duration of the pollen season of Ambrosia in the area of Lyon (France). Int J Biometeorol 48(2):65–73

    Article  PubMed  Google Scholar 

  • Makovcová S, Zlinská J, Mikolás V, Salát D, Krio M (1998) Ragweed in Slovak Republic. 6th International Congress on Aerobiology. Satellite Symposium Proceedings: Ragweed in Europe, Perugia, Italy, ALK Abelló

  • Makra L, Juhász M, Borsos E, Béczi R (2004) Meteorological variables connected with airborne ragweed pollen in Southern Hungary. Int J Biometeorol 29(1):37–47

    Google Scholar 

  • Mesinger F, Janiæ ZI, Nickoviæ S, Gavrilov D, Deaven DG (1988) The step-mountain coordinate: model description and performance for cases of alpine lee cyclogenesis and for case of an appalachian redevelopment. Mon Weather Rev 116(7):1493–1518

    Article  Google Scholar 

  • Nickovic S, Michailovic D, Rajkovic B, Papdopulus A (1998) The weather forecasting system SKIRON II, description of the model. University of Athens, Athens. ISBN VOL II: 960-8468-16-7 p 228

    Google Scholar 

  • Peternel R, Culig J, Srnec L, Mitic B, Vukusic I, Hrga I (2005) Variation in ragweed (Ambrosia artemisiifolia L.) pollen concentration in Central Croatia. Ann Agric Environ Med 12(1):11–16

    PubMed  Google Scholar 

  • Puc M (2004) Ragweed pollen in the air of Szczecin. Ann Agric Environ Med 11(1):53–57

    PubMed  Google Scholar 

  • Rich TCG (1994) Ragweeds (Ambrosia L.) in Britain. Grana 33:38–43

    Article  Google Scholar 

  • Rybnícek O, Novotná B, Rybníckova E, Rybnícek K (2000) Ragweed in the Czech Republic. Aerobiologia 16(2):287–290

    Article  Google Scholar 

  • Saar M, Gudžinskas Z, Plompuu T, Linno E, Minkiene Z, Motiekaityte V (2000) Ragweed plants and airborne pollen in the Baltic States. Aerobiologia 16(1):101–106

    Article  Google Scholar 

  • Skjøth AC, Hertel O, Ellermann T (2002) Use of the ACDEP trajectory model in the Danish nation-wide Background Monitoring Programme. Phys Chem Earth Pt B 27(35):1469–1477

    Article  Google Scholar 

  • Smith M, Emberlin J, Kress A (2005) Examining high magnitude grass pollen episodes at Worcester, United Kingdom, using back-trajectory analysis. Aerobiologia 21(2):85–94

    Article  Google Scholar 

  • Stach A (2000) Variation in pollen concentration of the most allergenic taxa in Poznan (Poland), 1995–1996. Aerobiologia 16:63–68

    Article  Google Scholar 

  • Stach A (2005) Is pollen of ragweed (Ambrosia spp.) a threat to people with allergies in the Wielkopolska region? Biodiversity: Research and Conservation 1(16):Accepted and awaiting publication

  • Stepalska D, Szczepanek K, Myszkowska D (2002) Variation in Ambrosia pollen concentration in Southern and Central Poland in 1982–1999. Aerobiologia 18(1):13–22

    Article  Google Scholar 

  • Taramaracaz P, Lambelet C, Clot B, Keimer C, Hauser C (2005) Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Med Weekly 135:538–548

    Google Scholar 

  • White JF, Bernstein DI (2003) Key pollen allergens in North America. Ann Allergy Asthma Immunol 91(5):425–435

    Article  PubMed  Google Scholar 

  • Wos A (1994) Klimat Niziny Wielkopolskiej. Adam Mickiewicz University, Poznan

    Google Scholar 

  • Zukowski W (1960) Kilka interesujacych gatunków synantropijnych z miasta Poznania. Przyr Polski Zach 4:141–145

    Google Scholar 

Download references

Acknowledgements

This work was partly funded by the European Union’s Sixth Framework Programme through the Marie Curie Actions Transfer of Knowledge Development Scheme. European project MTKD-CT-2004-003170. Polish Ministry of Education and Science grant 128/E-366/6 PR UE/DIE265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stach, A., Smith, M., Skjøth, C.A. et al. Examining Ambrosia pollen episodes at Poznań (Poland) using back-trajectory analysis. Int J Biometeorol 51, 275–286 (2007). https://doi.org/10.1007/s00484-006-0068-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-006-0068-1

Keywords

Navigation