Skip to main content
Log in

Sensorisch-autonome Neuropathien und Natriumkanal-assoziierte Schmerzerkrankungen

Sensory and autonomic neuropathies and pain-related channelopathies

  • CME Zertifizierte Fortbildung
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Ein Verlust von Sensibilität und Schmerzempfinden kann durch einen Entwicklungsdefekt, die Degeneration nozizeptiver Fasern oder eine veränderte neuronale Erregbarkeit verursacht werden. Eine sensorische Neurodegeneration findet sich insbesondere in der heterogenen Gruppe der hereditären sensorisch-autonomen Neuropathien (HSAN). Wesentliches Merkmal der HSAN ist die Neigung der Patienten zu schweren Verletzungen aufgrund der fehlenden Schutzfunktion von Schmerz. Klinisch ähnlich ist die angeborene Schmerzunempfindlichkeit. Sie wird primär durch eine veränderte Erregbarkeit nozizeptiver Fasern aufgrund von Mutationen in spannungsgesteuerten Natriumkanälen verursacht. Im Gegensatz zu HSAN besteht häufig keine Neurodegeneration. Ziel dieses Weiterbildungsbeitrags ist die Darstellung der Krankheitsbilder der HSAN sowie schmerzassoziierter Natriumkanalerkrankungen mit einem Schwerpunkt auf den zugrunde liegenden Pathomechanismen.

Abstract

Loss of pain perception can result from neurodevelopmental defects, degeneration of nociceptive fibers, or altered excitability of sensory neurons. Hereditary neurodegeneration leading to pain loss is classified as sensory and autonomic neuropathy (HSAN). Mutations in approximately 15 genes have been identified in the group of HSAN disorders. Hallmark of the disease is a liability to injury because of impaired acute pain as a warning system to prevent harm. The clinically overlapping “congenital insensitivity to pain (CIP)” is caused by mutations in voltage-gated sodium channels, which control the excitability of nociceptors. However, mutations in the latter genes can also result in disorders with increased pain susceptibility. This review summarizes the clinical presentation of HSAN and pain-related channelopathies and discusses the underlying disease mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Auer-Grumbach M (2013) Hereditary sensory and autonomic neuropathies. Handb Clin Neurol 115:893–906

    Article  PubMed  Google Scholar 

  2. Rotthier A, Baets J, Timmerman V et al (2012) Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat Rev Neurol 8:73–85

    Article  CAS  PubMed  Google Scholar 

  3. Freeman R (2005) Autonomic peripheral neuropathy. Lancet 365:1259–1270

    Article  CAS  PubMed  Google Scholar 

  4. Guelly C, Zhu PP, Leonardis L et al (2011) Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I. Am J Hum Genet 88:99–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kornak U, Mademan I, Schinke M et al (2014) Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3. Brain 137(Pt 3):683–692

    Article  PubMed  Google Scholar 

  6. Fischer D, Schabhuttl M, Wieland T et al (2014) A novel missense mutation confirms ATL3 as a gene for hereditary sensory neuropathy type 1. Brain 137:e286

    Article  PubMed  Google Scholar 

  7. Zhao X, Alvarado D, Rainier S et al (2001) Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat Genet 29:326–331

    Article  CAS  PubMed  Google Scholar 

  8. Kurth I, Pamminger T, Hennings JC et al (2009) Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat Genet 41:1179–1181

    Article  CAS  PubMed  Google Scholar 

  9. Khaminets A, Heinrich T, Mari M et al (2015) Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522(7556):354–358

    Article  CAS  PubMed  Google Scholar 

  10. Hubner CA, Kurth I (2014) Membrane-shaping disorders: a common pathway in axon degeneration. Brain 137:3109–3121

    Article  PubMed  Google Scholar 

  11. Bejaoui K, Wu C, Scheffler MD et al (2001) SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat Genet 27:261–262

    Article  CAS  PubMed  Google Scholar 

  12. Dawkins JL, Hulme DJ, Brahmbhatt SB et al (2001) Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat Genet 27:309–312

    Article  CAS  PubMed  Google Scholar 

  13. Rotthier A, Auer-Grumbach M, Janssens K et al (2010) Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Am J Hum Genet 87:513–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Garofalo K, Penno A, Schmidt BP et al (2011) Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J Clin Invest 121:4735–4745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Scherer SS (2011) The debut of a rational treatment for an inherited neuropathy? J Clin Invest 121:4624–4627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Einarsdottir E, Carlsson A, Minde J et al (2004) A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception. Hum Mol Genet 13:799–805

    Article  CAS  PubMed  Google Scholar 

  18. Indo Y, Tsuruta M, Hayashida Y et al (1996) Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat Genet 13:485–488

    Article  CAS  PubMed  Google Scholar 

  19. Zhang K, Fishel Ben Kenan R, Osakada Y et al (2013) Defective axonal transport of Rab7 GTPase results in dysregulated trophic signaling. J Neurosci 33:7451–7462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Riviere JB, Ramalingam S, Lavastre V et al (2011) KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am J Hum Genet 89:219–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lee JR, Srour M, Kim D et al (2015) De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy. Hum Mutat 36(1):69–78

    Article  CAS  PubMed  Google Scholar 

  22. Lafreniere RG, MacDonald ML, Dube MP et al (2004) Identification of a novel gene (HSN2) causing hereditary sensory and autonomic neuropathy type II through the Study of Canadian Genetic Isolates. Am J Hum Genet 74:1064–1073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shekarabi M, Girard N, Riviere JB et al (2008) Mutations in the nervous system – specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II. J Clin Invest 118:2496–2505

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Loggia ML, Bushnell MC, Tetreault M et al (2009) Carriers of recessive WNK1/HSN2 mutations for hereditary sensory and autonomic neuropathy type 2 (HSAN2) are more sensitive to thermal stimuli. J Neurosci 29:2162–2166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Anderson SL, Coli R, Daly IW et al (2001) Familial dysautonomia is caused by mutations of the IKAP gene. Am J Hum Genet 68:753–758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Slaugenhaupt SA, Blumenfeld A, Gill SP et al (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68:598–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Edvardson S, Cinnamon Y, Jalas C et al (2012) Hereditary sensory autonomic neuropathy caused by a mutation in dystonin. Ann Neurol 71:569–572

    Article  CAS  PubMed  Google Scholar 

  28. Klein CJ, Botuyan MV, Wu Y et al (2011) Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet 43:595–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Winkelmann J, Lin L, Schormair B et al (2012) Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet 21:2205–2210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Chen YC, Auer-Grumbach M, Matsukawa S et al (2015) Transcriptional regulator PRDM12 is essential for human pain perception. Nat Genet 47:803–808

    Article  CAS  PubMed  Google Scholar 

  31. Cox JJ, Reimann F, Nicholas AK et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898

    Article  CAS  PubMed  Google Scholar 

  32. Goldberg YP, MacFarlane J, MacDonald ML et al (2007) Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 71:311–319

    Article  CAS  PubMed  Google Scholar 

  33. Weiss J, Pyrski M, Jacobi E et al (2011) Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472:186–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Goldberg YP, Pimstone SN, Namdari R et al (2012) Human Mendelian pain disorders: a key to discovery and validation of novel analgesics. Clin Genet 82:367–373

    Article  CAS  PubMed  Google Scholar 

  35. Goldberg YP, Price N, Namdari R et al (2012) Treatment of Na(v)1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain 153:80–85

    Article  CAS  PubMed  Google Scholar 

  36. Yuan J, Matsuura E, Higuchi Y et al (2013) Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation. Neurology 80:1641–1649

    Article  CAS  PubMed  Google Scholar 

  37. Leipold E, Liebmann L, Korenke GC et al (2013) A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet 45:1399–1404

    Article  CAS  PubMed  Google Scholar 

  38. Woods CG, Babiker MO, Horrocks I et al (2014) The phenotype of congenital insensitivity to pain due to the Na1.9 variant p.L811P. Eur J Hum Genet 23:561–563

    Article  PubMed  Google Scholar 

  39. Zhang XY, Wen J, Yang W et al. (2013) Gain-of-function mutations in SCN11A cause familial episodic pain. Am J Hum Genet 93:957–966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Fertleman CR, Baker MD, Parker KA et al (2006) SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52:767–774

    Article  CAS  PubMed  Google Scholar 

  41. Yang Y, Wang Y, Li S et al (2004) Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet 41:171–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Dib-Hajj SD, Cummins TR, Black JA et al (2010) Sodium channels in normal and pathological pain. Annu Rev Neurosci 33:325–347

    Article  CAS  PubMed  Google Scholar 

  43. Faber CG, Hoeijmakers JG, Ahn HS et al (2012) Gain of function NaV1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 71:26–39

    Article  CAS  PubMed  Google Scholar 

  44. Faber CG, Lauria G, Merkies IS et al (2012) Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A 109:19444–19449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Huang J, Han C, Estacion M et al (2014) Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain 137:1627–1642

    Article  PubMed  Google Scholar 

  46. Kremeyer B, Lopera F, Cox JJ et al (2010) A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66:671–680

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kurth.

Ethics declarations

Interessenkonflikt

I. Kurth gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Redaktion

H. Göbel, Kiel

R. Sabatowski, Dresden

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurth, I. Sensorisch-autonome Neuropathien und Natriumkanal-assoziierte Schmerzerkrankungen. Schmerz 29, 445–457 (2015). https://doi.org/10.1007/s00482-015-0024-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-015-0024-2

Schlüsselwörter

Keywords

Navigation