Skip to main content
Log in

Annual actual evapotranspiration in inland river catchments of China based on the Budyko framework

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

By investigating long time series of climate and discharge data set were collected from 68 inland river catchments in China, we analyzed the spatial and temporal variations of the annual actual evapotranspiration (AE, mm/year) using the Budyko hypothesis. A simple parameterization estimated parameter \(\bar{w}\) model (SMR Model, \(\bar{w}\) parameter for the Fu’s equation, one form of the Budyko hypothesis), was proposed using a dataset of 68 catchment independently and combined based on the landscape characteristics [Relative soil water storage \(\left( {\frac{{S_{max} }}{{\overline{ET}_{0} }}} \right)\), catchment areas (A) and average slope (tanβ)], this model explains 58.3 % of observed variance (the optimized \(\bar{w}\)) with the root-mean-square error of 0.24. The Budyko hypothesis with estimated parameter \(\bar{w}\) reproduced observed mean annual AE well for the combined 68 catchments. The estimated mean annual AE for 68 catchments showed remarkable agreement with that derived from the long-term water balance with the determining coefficient of R 2 = 0.918. This implies that Budyko hypothesis can be used for estimating AE accurately in inland river catchments, and it is especially useful for estimates in ungauged catchments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen, RG, Pereira LS, Raes D, Smith M (eds.) (1998) Crop evapotranspiration: guidelines for computing crop water requirements, irrigation and drainage paper 56, Food and Agriculture Organization, Rome

  • Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23

    Article  Google Scholar 

  • Budyko MI (1958) The heat balance of the earth’s surface (trans Russian: Stepanova NA). U. S. Department of Commerce, Washington, DC

  • Budyko MI (1963) Evaporation under natural conditions. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  • Budyko MI (1974) In: Miller DH (ed) Climate and life. Academic, San Diego

  • Burn DH, Hesch NM (2007) Trends in evaporation for the Canadian Prairies. J Hydrol 336(1–2):61–73. doi:10.1016/j.jhydrol.2006.12.011

    Article  Google Scholar 

  • Chen YN (2014) Water resources research in the arid region of northwest China. Chinese Science Press, Beijing (in Chinese)

    Book  Google Scholar 

  • Chen YN, Kuniyoshi T, Xu CC, Chen YP, Xu ZX (2006) Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrol Process 20(10):2207–2216. doi:10.1002/hyp.6200

    Article  Google Scholar 

  • Choudhury BJ (1999) Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J Hydrol 216:99–110

    Article  Google Scholar 

  • Cong ZT, Zhang XY, Li D, Yang HB, Yang DW (2015) Understanding hydrological trends by combining the Budyko hypothesis and a stochastic soil moisture model. Hydrol Sci J 60(1):145–155. doi:10.1080/02626667.2013.866710

    Article  Google Scholar 

  • Donohue RJ, Roderick ML, McVicar TR (2010) Can dynamic vegetation information improve the accuracy of Budyko’s hydrological model? J Hydrol 390(1–2):23–34

    Article  Google Scholar 

  • Donohue RJ, Roderick ML, McVicar TR (2011) Assessing the differences in sensitivities of runoff to changes in climatic conditions across a large basin. J Hydrol 406(3–4):234–244

    Article  Google Scholar 

  • Donohue RJ, Roderick ML, McVicar TR (2012) Roots, storms and soil pores: incorporating key ecohydrological processes into Budyko’s hydrological model. J Hydrol 436–437:35–50

    Article  Google Scholar 

  • Dunne KA, Willmott CJ (1996) Global distribution of plant extractable water capacity of soil. Int J Climatol 16:841–859

    Article  Google Scholar 

  • Food and Agricultural Organization (2003) Map of world soil resources, Rome

  • Fu BP (1981) On the calculation of evaporation from land surface. Sci Atmos Sin 5:23–31 (in Chinese)

    Google Scholar 

  • Gao G, Xu CY, Chen D, Singh VP (2012) Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China. Stoch Environ Res Risk Assess 26(5):655–669

    Article  Google Scholar 

  • Gentine P, Odorico PD, Lintner B, Sivandran G, Salvucci GD (2012) Interdependence of climate, soil, and vegetation as constrained by the Budyko curve. Geophys Res Lett 39:L19404. doi:10.1029/2012GL053492

    Article  Google Scholar 

  • Gerrits A et al (2009) Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model. Water Resour Res 45:W04403

    Article  Google Scholar 

  • Hornbeck JW (1975) Streamflow response to forest cutting and revegetation. Water Resour Bull 11:1257–1260

    Article  Google Scholar 

  • Hornbeck JW, Martin CW, Eagar C (1997) Summary of water yield experiments at Hubbard Brook experimental forest, New Hampshire. Can J For Res 27:2043–2052

    Google Scholar 

  • Hupet F, Vanclooster M (2001) Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration. J Hydrol 243(3–4):192–204. doi:10.1016/S0022-1694(00)00413-3

    Article  Google Scholar 

  • Jothityangkoon C, Sivapalan M (2009) Framework for exploration of climatic and landscape controls on catchment water balance, with emphasis on inter-annual variability. J Hydrol 371:154–168. doi:10.1016/j.jhy-drol.2009.03.030

    Article  Google Scholar 

  • Li D, Pan M, Cong Z, Zhang L, Wood E (2013) Vegetation control on water and energy balance within the Budyko framework. Water Resour Res 49:1–8. doi:10.1002/wrcr.20107

    Article  Google Scholar 

  • Liu CM, Zhang D (2011) Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China. Acta Geogr Sin 66(5):579–588 (in Chinese)

    Google Scholar 

  • Ma JZ, Wang XS, Edmunds WM (2004) The characteristics of groundwater resources and their changes under the impacts of human activity in the arid Northwest China—a case study of the Shiyang River Basin. J Arid Environ 61(2):277–295. doi:10.1016/j.jaridenv.2004.07.014

    Article  Google Scholar 

  • Milly PCD (1994) Climate, soil water storage and the average annual water balance. Water Resour Res 30:2143–2156

    Article  Google Scholar 

  • New MG, Hulme M, Jones PD (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901–1996 monthly grids of terrestrial surface climate. J Clim 13:2217–2238

    Article  Google Scholar 

  • Peel MC, Chiew FHS, Western AW, McMahon TA (2000) Extension of unimpaired monthly streamflow data and regionalization of parameter values to estimate streamflow in ungauged catchments, report to National Land and Water Resources Audit, Centre for Environmental Applied Hydrology, University of Melbourne, Melbourne

  • Peterson T, Golubev V, Groisman P (1995) Evaporation losing its strength. Nature 393:687–688. doi:10.1038/377687b0

    Article  Google Scholar 

  • Pham MT, Vernieuwe H, De Baets B, Willems P, Verhoest NEC (2015) Stochastic simulation of precipitation-consistent daily reference evapotranspiration using vine copulas. Stoch Environ Res Risk Assess 29:1–18. doi:10.1007/s00477-015-1181-7

    Article  Google Scholar 

  • Pike JG (1964) The estimation of annual runoff from meteorological data in a tropical climate. J Hydrol 2:116–123

    Article  Google Scholar 

  • Potter NJ, Zhang L (2009) Interannual variability of catchment water balance in Australia. J Hydrol 369:120–129. doi:10.1016/j.jhyd-rol.2009.02.005

    Article  Google Scholar 

  • Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298:1410–1411. doi:10.1126/science.1075390

    CAS  Google Scholar 

  • Roderick ML, Farquhar GD (2011) A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour Res 47:W00G07

    Google Scholar 

  • Sankarasubramanian A, Vogel RM (2002) Comment on the paper: “basin hydrologic response relations to distributed physiographic descriptors and climate”. J Hydrol 263:257–261

    Article  Google Scholar 

  • Shao Q, Traylen A, Zhang L (2012) Nonparametric method for estimating the effects of climatic and catchment characteristics on mean annual evapotranspiration. Water Resour Res 48:W03517. doi:10.1029/2010WR009610

    Article  Google Scholar 

  • Shen Y, Liu C, Liu M, Zeng Y, Tian C (2010) Change in pan evaporation over the past 50 years in the arid region of China. Hydrol Process 24:225–231

    Google Scholar 

  • Shi Z, Xu L, Yang X, Guo H, Dong L, Song A, Shan N (2016) Trends in reference evapotranspiration and its attribution over the past 50 years in the Loess Plateau, China: implications for ecological projects and agricultural production. Stoch Environ Res Risk Assess 30:1–17. doi:10.1007/s00477-015-1203-5

    Article  Google Scholar 

  • Shuttleworth WJ (1993) Evaporation. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, pp 4.1–4.53

    Google Scholar 

  • Xu CY, Singh VP (2005) Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual evapotranspiration in different climatic regions. J Hydrol 308:105–121

    Article  Google Scholar 

  • Xu XL, Liu W, Scanlon BR, Zhang L, Pan M (2013) Local and global factors controlling water-energy balances within the Budyko framework. Geophys Res Lett 40:6123–6129. doi:10.1002/2013GL058324

    Article  Google Scholar 

  • Yang D, Li C, Hu H, Lei Z, Yang S, Kusuda T, Koike T, Musiake K (2004) Analysis of water resources variability in the Yellow River of China during the last half century using historical data. Water Resour Res 40:W06502. doi:10.1029/2003WR002763

    Google Scholar 

  • Yang D, Sun F, Liu Z, Cong Z, Lei Z (2006) Interpreting the complementary relationship in nonhumid environments based on the Budyko and Penman hypotheses. Geophys Res Lett 33:L18402. doi:10.1029/2006GL027657

    Google Scholar 

  • Yang D, Sun F, Liu Z, Cong Z, Ni G, Lei Z (2007) Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis. Water Resour Res 43:W04426. doi:10.1029/2006WR005224

    Google Scholar 

  • Yang D, Shao W, Yeh PJF, Yang H, Kanae S, Oki T (2009) Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resour Res 45:W00A14. doi:10.1029/2008WR006948

    Google Scholar 

  • Yeşilırmak E (2013) Temporal changes of warm-season pan evaporation in a semi-arid basin in Western Turkey. Stoch Environ Res Risk Assess 27(2):311–321

    Article  Google Scholar 

  • Zhang L, Dawes W, Walker GR (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour Res 37:701–708

    Article  Google Scholar 

  • Zhang L, Hickel K, Dawes WR, Chiew FHS, Western AW, Briggs PR (2004) A rational function approach for estimating mean annual evapotranspiration. Water Resour Res 40:W02502. doi:10.1029/2003WR002710

    Google Scholar 

  • Zhang Q, Xu CY, Chen YD, Ren L (2011) Comparison of evapotranspiration variations between the Yellow River and Pearl River basin, China. Stoch Environ Res Risk Assess 25(2):139–150

    Article  Google Scholar 

Download references

Acknowledgments

The research is financially supported by the Basic Research Operating Expenses of the National Natural Science Foundation of China (Grant No. 91437109), Central level Non-profit Research Institutes (IDM201506), China Desert Meteorological Science Research Foundation (SQJ2015012), National Natural Science Foundation of China (Grant No. 41375101), and National Basic Research Program of China (973 Program: 2010CB951001). We would like to thank the NCC of CMA for providing valuable climate datasets. The authors would like to thank Prof. Dr. George Christakos, four anonymous reviewers for their professional comments and suggestions, which are greatly helpful for further improvement of the quality of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqiang Yao.

Appendix 1

Appendix 1

See Table 1.

Table 1 Basic characteristics of the 68 study catchments

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Mao, W., Yang, Q. et al. Annual actual evapotranspiration in inland river catchments of China based on the Budyko framework. Stoch Environ Res Risk Assess 31, 1409–1421 (2017). https://doi.org/10.1007/s00477-016-1271-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1271-1

Keywords

Navigation