Skip to main content

Advertisement

Log in

Comparison of BIAS correction techniques for GPCC rainfall data in semi-arid climate

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Long-term historical precipitation data are important in developing metrics for studying the impacts of past hydrologic events (e.g., droughts) on water resources management. Many geographical regions around the world often witness lack of long term historical observation and to overcome this challenge, Global Precipitation Climatology Center (GPCC) datasets are found to be useful. However, the GPCC data are available at coarser scale (0.5° resolution), therefore bias correction techniques are often applied to generate local scale information before it can be applied for decision making activities. The objective of this study is to evaluate and compare five different bias correction techniques (BCT’s) to correct the GPCC data with respect to rain gauges in Iraq, which is located in a semi-arid climatic zone. The BCT’s included in this study are: Mean Bias-remove (B) technique, Multiplicative Shift (M), Standardized-Reconstruction (S), Linear Regression (R), and Quantile Mapping (Q). It was observed that the Performance Index (PI) of BCT’s differs in space (i.e., precipitation pattern) and temporal scale (i.e., seasonal and monthly). In general, the PI for the Q and B were better compared to other three (M, S and R) bias correction techniques. Comparatively, Q performs better than B during wet season. However, both these techniques performed equally well during average rainy season. This study suggests that instead of using a single bias correction technique at different climatic regimes, multiple BCT’s needs to be evaluated for identifying appropriate methodology that suits local climatology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acharya N, Chattopadhyay S, Mohanty UC, Dasha SK, Sahooc LN (2013) On the bias correction of general circulation model output for Indian summer Monsoon. J Meteorol Appl 20(3):349–356

    Article  Google Scholar 

  • Alghazali NO, Alawadi D (2014) Fitting statistical distributions of monthly rainfall for some Iraqi stations. J Civ Environ Res 6(6):40–46. ISSN 2224-5790 (Paper) ISSN 2225-0514 (Online)

    Google Scholar 

  • Al-Suhili R, Khanbilvardi R (2014) Frequency analysis of the monthly rainfall data at Sulaimania region. Am J Eng Res 3(5):212–222 E-ISSN: 2320-0847 p-ISSN: 2320-0936

    Google Scholar 

  • Ashfaq M, Bowling LC, Cherkauer K, Pal JS, Diffenbaugh NS (2010) Influence of climate model biases and daily scale temperature and precipitation events on hydrological impacts assessment: a case study of the United States

  • Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. J Earth Syst Sci Data 5:71–99

    Article  Google Scholar 

  • Boé J et al (2007) Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int J Climatol 27(12):1643–1656

    Article  Google Scholar 

  • Bolvin DT, Adler RF, Huffman GJ, Nelkin EJ, Poutiainen JP (2009) Comparison of GPCP monthly and daily precipitation estimates with high-latitude gauge observations. J Appl Meteorol Climatol 48:1843–1857

    Article  Google Scholar 

  • Chen J, Brissette FP, Chaumont D, Braun M (2013) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49:4187–4205. doi:10.1002/wrcr.20331

    Article  Google Scholar 

  • Chen MP, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-year monthly analysis based on gauge observations. J Hydrometeorol 3:249–266

    Article  Google Scholar 

  • Chokngamwong R, Chiu LS (2004) Comparisons of daily Thailand rain gauge with GPCC and TRMM satellite precipitation measurements. In: The 2nd TRMM international science conference

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Chu TW, Shirmohammadi A, Montas H, Sadeghi A (2004) Evaluation of the Swat model’s sediment and nutrient components in the piedmont physiographic region of Maryland. Am Soc Agric Eng 47(5):1523–1538

    Article  Google Scholar 

  • Crawford SL (2006) Statistical primer for cardiovascular research correlation and regression circulation. J Circ 114:2083–2088

    Article  Google Scholar 

  • Davis RE (1976) Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J Phys Oceanogr 6:249–266

    Article  CAS  Google Scholar 

  • Diaz-Nieto J, Wilby RL (2005) A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames, United Kingdom. Climat Change 69(2–3):245–268

    Article  Google Scholar 

  • Dosio A, Paruolo P (2011) Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: evaluation on the present climate. J Geophys Res 116:D16106. doi:10.1029/2011JD015934

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578

    Article  Google Scholar 

  • Gudmundsson L, Bremnes J, Haugen J, Engen-Skaugen T (2012) Technical note: downscaling RCM precipitation to the station scale using statistical transformations—a comparison of methods. Hydrol Earth Syst Sci 16(9):3383–3390

    Article  Google Scholar 

  • Gupta HV, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J. Hydrologic Eng. 4(2):135–143

    Article  Google Scholar 

  • Hay LE, Wilby RJL, Leavesley GH (2000) A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J Am Water Resour Assoc 36:387–397. doi:10.1111/j.1752-1688.2000.tb04276.x

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/Joc.1276

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the Global Precipitation Record: GPCP Version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040000

    Article  Google Scholar 

  • Ines AVM, Hansen JW (2006) Bias correction of daily GCM rainfall for crop simulation studies. J Agric For Meteorol 138:44–53

    Article  Google Scholar 

  • Jeong DI et al (2012) Comparison of transfer functions in statistical downscaling models for daily temperature and precipitation over Canada. Stoch Env Res Risk Assess 26(5):633–653

    Article  Google Scholar 

  • Johnson F, Sharma A (2011) Accounting for inter-annual variability: a comparison of options for water resources climate change impact assessments. Water Resour Res 47:4

    Article  Google Scholar 

  • Kharin VV, Zwiers FW (2002) Notes and correspondence climate predictions with multimodel ensembles. J Clim 15:793–799

    Article  Google Scholar 

  • Krishnamurti TN, Kishtawal CM, Shin DW, Williford CE (2000) Multi-model superensemble forecasts for weather and seasonal climate. J Climat 13:4196–4216

    Article  Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 173–210

    Google Scholar 

  • Lafon T, Dadson S, Buys G, Prudhomme C (2013) Bias correction of daily precipitation simulated by a regional climate model: a comparison of methods. Int J Climatol 33:1367–1381

    Article  Google Scholar 

  • Leander R, Buishand TA (2007) Resampling of regional climate model output for the simulation of extreme river flows. J Hydrol 332(3–4):487–496. doi:10.1016/j.jhydrol.2006.08.006

    Article  Google Scholar 

  • Legates DR, McCabe GJ Jr (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. J Water Resour Res 35(1):233–241

    Article  Google Scholar 

  • Li C, Eva S, Horton DE, Diffenbaugh NS, Michalak AM (2014) Joint bias correction of temperature and precipitation in climate model simulations. J Geogr Res. doi:10.1002/2014JD022514

    Google Scholar 

  • Li H, Justin Sh, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J Geophys Res Atmos (1984–2012) 115(D10)

  • Malinowski CJ (ed) (2002) Iraq: A geography. Department of Geography & Environmental Engineering, West Point

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Theme M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. American Geophysical Union. 8755-1209/10

  • Maurer EP, Hidalgo HG (2008) Utility of daily vs. monthly large-scale climate data: an inter-comparison of two statistical downscaling methods. Hydrol Earth Syst Sci 12:551–563

    Article  Google Scholar 

  • Mishra AK, Coulibaly P (2009) Developments in hydrometric network design: a review. Rev Geophys. doi:10.1029/2007RG000243

    Google Scholar 

  • Mishra AK, Singh VP (2009) Analysis of drought severity-area-frequency curves using a general circulation model and scenario uncertainty. J Geophys Res Atmos 114: D06120, (Publisher: American Geophysical Union)

  • Mishra AK et al (2013) Extraction of information content from stochastic disaggregation and bias corrected downscaled precipitation variables for crop simulation. Stoch Env Res Risk Assess 27(2):449–457

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2010) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. J Am Soc Agric Biol Eng 50(3):885–900

    Google Scholar 

  • Mpelasoka FS, Chiew FHS (2009) Influence of rainfall scenario construction methods on runoff projections. J Hydrometeor 10:1168–1183. doi:10.1175/2009JHM1045.1

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: Part 1. A discussion of principles. J Hydrology 10(3):282–290

    Article  Google Scholar 

  • Nicholson SE, Some B, McCollum J, Nelkin E, Klotter D, Berte Y, Diallo BM, Gaye I, Kpabeba G, Ndiaye O, Noukpozounkou JN, Tanu MM, Thiam A, Toure AA, Traore AK (2003) Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part I: validation of GPCC rainfall product and pre-TRMM satellite and blended products. J Appl Meteorol 42(10):1337–1345

    Article  Google Scholar 

  • Pan J, van den Dool H (1998) Extended-range probability forecasts based on dynamical model output. Weather Forecast 13:983–996

    Article  Google Scholar 

  • Piani C, Haerter J, Coppola E (2010a) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192. doi:10.1007/s00704-009-0134-9

    Article  Google Scholar 

  • Piani C, Weedon G, Best M, Gomes S, Viterbo P, Hagemann S, Haerter J (2010b) Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J Hydrol 395:199–215. doi:10.1016/j.jhydrol.2010.10.024

    Article  Google Scholar 

  • Prakash S, Mahesh C, Rakesh Gairola M (2011) Large-scale precipitation estimation using Kalpana-1 IR measurements and its validation using GPCP and GPCC data. J Theor Appl Climatol 106:283–293. doi:10.1007/s00704-011-0435-7

    Article  Google Scholar 

  • Prudhomme Ch, Reynard N, Crooks S (2002) Downscaling of global climate models for flood frequency analysis: where are we now? Hydrol Process 16:1137–1150

    Article  Google Scholar 

  • Rajsekhar D, Singh VP, Mishra AK (2015) Integrated drought causality, hazard, and vulnerability assessment for future socioeconomic scenarios: an information theory perspective. J Geophys Res Atmos 120(13):6346–6378

    Article  Google Scholar 

  • Raziei T, Bordi I, Pereira LS, Sutera A (2010) Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets. Hydrol Earth Syst Sci 14:1919–1930

    Article  Google Scholar 

  • Raziei T, Bordi I, Santos PL (2011) An Application of GPCC and NCEP/NCAR datasets for drought variability analysis in Iran. Water Resour Manag 25:1075–1086. doi:10.1007/s11269-010-9657-1

    Article  Google Scholar 

  • Rodda JC (1995a) Guessing or assessing the world’s water resources? Water Environ J 9:360–368. doi:10.1111/j.1747-6593.1995.tb00953.x

    Article  CAS  Google Scholar 

  • Rodda JC (1995b) Whither world water? J Am Water Res Assoc 31:1–7. doi:10.1111/j.1752-1688.1995.tb03358.x

    Article  Google Scholar 

  • Rojas R, Feyen L, Dosio A, Bavera D (2011) Improving pan European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations. Hydrol Earth Syst Sci 15(8):2599–2620. doi:10.5194/hess-15-2599-2011

    Article  Google Scholar 

  • Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001) Validation of the Swat model on a Large River Basin with point and nonpoint source. J Am Water Resour Assoc 37(5):1169–1188

    Article  CAS  Google Scholar 

  • Schneider U, Becker A, Meyer-Christoffer A, Ziese M, Rudolf B (2011) Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre (GPCC). Deutscher Wetterdienst, Offenbach, pp 1–2

  • Schneider U, Becker A, Finger F, Meyer-Christoffer A, Ziese M, Rudolf B (2013) GPCC’s new land-surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl, Climatol

    Google Scholar 

  • Schmidli J, Frei C, Vidale PL (2006) Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. Int J Climatol 26:679–689

    Article  Google Scholar 

  • Sexton AM (2007) Evaluation of SWAT model applicability for water body impairment identification and TMDL analysis. Dissertation. University of Maryland. Pro Quest/UMI No. 3297254

  • Shabalova MV, van Deursen WPA, Buishand TA (2003) Assessing future discharge of the river Rhine using regional climate model integrations and a hydrological model. Climat Resour 23:233–246

    Article  Google Scholar 

  • Shao Q, Li Ming (2013) An improved statistical analogue downscaling procedure for seasonal precipitation forecast. Stoch Env Res Risk Assess 27(4):819–830

    Article  Google Scholar 

  • Singh J, Knapp HV, Demissie M (2004) Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. ISWS CR 2004-08. Champaign, Ill.: Illinois State Water Survey

  • Song X, Zhang J, AghaKouchak A, Roy SS, Xuan Y, Wang G, He R, Wang X, Liu C (2014) Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area. J Res Atmos, Geophys. doi:10.1002/2014JD022084

    Google Scholar 

  • Sunyer MA, Madsen H, Ang PH (2012) A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmos Res 103:119–128. doi:10.1016/j.atmosres.2011.06.011

    Article  Google Scholar 

  • Tanarhte M, Hadjinicolaou P, Lelieveld J (2012) Intercomparison of temperature and precipitation data sets based on observations in the Mediterranean and the Middle East. J Geophys Res 117(D12102):2012. doi:10.1029/2011JD017293

    Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29. doi:10.1016/j.jhydrol.2012.05.052

    Article  Google Scholar 

  • Willmott JC, Acklesion SG, Davis RE, Johannes J, Katherinme M, Klink KM, David RL, O’Donnell J, Clinton NR (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90(C5):8995–9005

    Article  Google Scholar 

  • Wood AW, Maurer EP, Kumar A, Lettenmaier DP (2002) Long-range experimental hydrologic forecasting for the eastern United States. J Geophys Res (Atmos) 107:4429

    Article  Google Scholar 

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscale climate model outputs. Clim Change 62:189–216

    Article  Google Scholar 

  • World Meteorological Organization (WMO) (1996) The adequacy of hydrological networks: a global assessment, WMO TD 740, World Meteorological Organization, Geneva

  • Xie P, Arkin PA (1997) Global Precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. B. Am. Meteorol. Soc. 78:2539–2558

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok. K. Mishra.

Ethics declarations

Conflict of interest

We have no conflict of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajaaj, A.A., Mishra, A.K. & Khan, A.A. Comparison of BIAS correction techniques for GPCC rainfall data in semi-arid climate. Stoch Environ Res Risk Assess 30, 1659–1675 (2016). https://doi.org/10.1007/s00477-015-1155-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1155-9

Keywords

Navigation