Skip to main content
Log in

Effects of temporally correlated infiltration on water flow in an unsaturated–saturated system

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Effects of temporally correlated infiltration on water flow in an unsaturated–saturated system were investigated. Both white noise and exponentially correlated infiltration processes were considered. The moment equations of the pressure head (ψ) were solved numerically to obtain the variance and autocorrelation functions of ψ at 14 observation points. Monte Carlo simulations were conducted to verify the numerical results and to estimate the power spectrum of ψ (S ψψ ). It was found that as the water flows through the system, the variance of the ψ (\( \sigma_{\psi }^{2} \)) were damped by the system: the deeper in the system, the smaller the \( \sigma_{\psi }^{2} \), and the larger the correlation timescale of the infiltration process (λ I ), the larger the \( \sigma_{\psi }^{2} \). The unsaturated–saturated system gradually filters out the short-term fluctuations of ψ and the damping effect is most significant in the upper part of the system. The fluctuations of ψ is non-stationary at early time and becomes stationary as time progresses: the larger the value of λ I , the longer the non-stationary period. The correlation timescale of the ψ (λ ψ ) increases with depth and approaches a constant value at depth: the larger the value of λ I , the larger the value of λ ψ . The results of the estimated S ψψ is consistent with those of the variance and autocorrelation function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Blöschl G (2001) Scaling in hydrology. Hydrol Process 15:709–711. doi:10.1002/Hyp.432

  • Brocca L, Melone F, Moramarco T, Morbidelli R (2009) Soil moisture temporal stability over experimental areas in Central Italy. Geoderma 148:364–374. doi:10.1016/j.geoderma.2008.11.004

    Article  Google Scholar 

  • Dagan G, Bresler E (1983) Unsaturated flow in spatially-variable fields. 1. Derivation of models of infiltration and redistribution. Water Resour Res 19:413–420. doi:10.1029/Wr019i002p00413

    Article  Google Scholar 

  • Dawes W, Ali R, Varma S, Emelyanova I, Hodgson G, McFarlane D (2012) Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia. Hydrol Earth Syst Sc 16:2709–2722. doi:10.5194/hess-16-2709-2012

    Article  Google Scholar 

  • Delworth TL, Manabe S (1988) The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J Clim 1:523–547

    Article  Google Scholar 

  • Gelhar LW (1993) Stochastic subsurface hydrology. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Govindaraju RS, Morbidelli R, Corradini C (2001) Areal infiltration modeling over soils with spatially correlated hydraulic conductivities. J Hydrol Eng 6:150–158. doi:10.1061/(Asce)1084-0699(2001)6:2(150)

    Article  Google Scholar 

  • Guan K et al (2011) Spatiotemporal scaling of hydrological and agrochemical export dynamics in a tile-drained Midwestern watershed. Water Resour Res 47:Artn W00j02. doi:10.1029/2010wr009997

    Article  Google Scholar 

  • Hurst HE (1951) Long-term storage capacity of reservoirs T. Am Soc Civ Eng 116:770–799

    Google Scholar 

  • Kantelhardt JW, Koscielny-Bunde E, Rybski D, Braun P, Bunde A, Havlin S (2006) Long-term persistence and multifractality of precipitation and river runoff records. J Geophys Res 111:D01106. doi:10.1029/2005jd005881

    Article  Google Scholar 

  • Katul GG et al (2007) On the spectrum of soil moisture from hourly to interannual scales. Water Resour Res 43:W05428. doi:10.1029/2006wr005356

    Article  Google Scholar 

  • Li ZW, Zhang YK (2007) Quantifying fractal dynamics of groundwater systems with detrended fluctuation analysis. J Hydrol 336:139–146. doi:10.1016/j.jhydrol.2006.12.017

    Article  Google Scholar 

  • Liang XY, Zhang YK (2014) Effect of heterogeneity on spatiotemporal variations of groundwater level in a bounded unconfined aquifer. Stoch Environ Res Risk A. doi:10.1007/s00477-014-0990-4

    Google Scholar 

  • Little MA, Bloomfield JP (2010) Robust evidence for random fractal scaling of groundwater levels in unconfined aquifers. J Hydrol 393:362–369. doi:10.1016/j.jhydrol.2010.08.031

    Article  Google Scholar 

  • Lu ZM, Zhang DX (2003a) On stochastic study of well capture zones in bounded, randomly heterogeneous media. Water Resour Res 39:1100. doi:10.1029/2002wr001633

    Google Scholar 

  • Lu ZM, Zhang DX (2003b) Solute spreading in nonstationary flows in bounded, heterogeneous unsaturated-saturated media. Water Resour Res 39:1049. doi:10.1029/2001wr000908

    Google Scholar 

  • Machiwal D, Jha MK, Mal BC (2006) Modelling infiltration and quantifying spatial soil variability in a wasteland of Kharagpur, India. Biosyst Eng 95:569–582. doi:10.1016/j.biosystemseng.2006.08.007

    Article  Google Scholar 

  • Maller RA, Sharma ML (1981) An analysis of areal infiltration considering spatial variability. J Hydrol 52:25–37. doi:10.1016/0022-1694(81)90093-7

    Article  Google Scholar 

  • Matsoukas C, Islam S, Rodriguez-Iturbe I (2000) Detrended fluctuation analysis of rainfall and streamflow time series J Geophys Res-Atmos 105:29165–29172. doi:10.1029/2000jd900419

    Google Scholar 

  • Meng H, Salas JD, Green TR, Ahuja LR (2006) Scaling analysis of space-time infiltration based on the universal multifractal model. J Hydrol 322:220–235. doi:10.1016/j.jhydrol.2005.03.016

    Article  Google Scholar 

  • Özger M, Mishra AK, Singh VP (2013) Seasonal and spatial variations in the scaling and correlation structure of streamflow data Hydrol Process 27:1681–1690. doi:10.1002/Hyp.9314

    Google Scholar 

  • Pandey G, Lovejoy S, Schertzer D (1998) Multifractal analysis of daily river flows including extremes for basins of five to two million square kilometres, one day to 75 years. J Hydrol 208:62–81. doi:10.1016/S0022-1694(98)00148-6

    Article  Google Scholar 

  • Priestley MB (1981) Spectral analysis and time series. Probability and mathematical statistics. Academic Press, London

    Google Scholar 

  • Rakhshandehroo GR, Amiri SM (2012) Evaluating fractal behavior in groundwater level fluctuations time series. J Hydrol 464:550–556. doi:10.1016/j.jhydrol.2012.07.030

    Article  Google Scholar 

  • Tessier Y, Lovejoy S, Hubert P, Schertzer D, Pecknold S (1996) Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J Geophys Res 101:26427–26440. doi:10.1029/96jd01799

    Article  Google Scholar 

  • Wang AH, Zeng XB, Shen SSP, Zeng QC, Dickinson RE (2006) Time scales of land surface hydrology. J Hydrometeorol 7:868–879. doi:10.1175/Jhm527.1

    Article  Google Scholar 

  • Yang GX, Bowling LC (2014) Detection of changes in hydrologic system memory associated with urbanization in the Great Lakes region. Water Resour Res 50:3750–3763. doi:10.1002/2014wr015339

    Article  Google Scholar 

  • Zhang DX (1998) Numerical solutions to statistical moment equations of groundwater flow in nonstationary, bounded, heterogeneous media. Water Resour Res 34:529–538. doi:10.1029/97wr03607

    Article  Google Scholar 

  • Zhang DX (1999) Nonstationary stochastic analysis of transient unsaturated flow in randomly heterogeneous media. Water Resour Res 35:1127–1141. doi:10.1029/1998wr900126

    Article  Google Scholar 

  • Zhang YK, Li ZW (2005) Temporal scaling of hydraulic head fluctuations: nonstationary spectral analyses and numerical simulations. Water Resour Res 41:W07031. doi:10.1029/2004wr003797

    Google Scholar 

  • Zhang YK, Li ZW (2006) Effect of temporally correlated recharge on fluctuations of groundwater levels. Water Resour Res 42:W10412. doi:10.1029/2005wr004828

    Google Scholar 

  • Zhang DX, Lu ZM (2002) Stochastic analysis of flow in a heterogeneous unsaturated-saturated system. Water Resour Res 38:1018. doi:10.1029/2001wr000515

    Google Scholar 

  • Zhang YK, Schilling K (2004) Temporal scaling of hydraulic head and river base flow and its implication for groundwater recharge. Water Resour Res 40:W03504. doi:10.1029/2003wr002094

    Google Scholar 

  • Zhang DX, Winter CL (1998) Nonstationary stochastic analysis of steady state flow through variably saturated, heterogeneous media. Water Resour Res 34:1091–1100. doi:10.1029/97wr03661

    Article  Google Scholar 

  • Zhang YK, Yang XY (2010) Effects of variations of river stage and hydraulic conductivity on temporal scaling of groundwater levels: numerical simulations. Stoch Environ Res Risk A 24:1043–1052. doi:10.1007/s00477-010-0437-5

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported with the research grants from the National Nature Science Foundation of China (NSFC-41272260; NSFC-41330314; NSFC-41302180), the Natural Science Foundation of Jiangsu Province (SBK201341336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuyu Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Zhang, YK. & Liang, X. Effects of temporally correlated infiltration on water flow in an unsaturated–saturated system. Stoch Environ Res Risk Assess 30, 2009–2017 (2016). https://doi.org/10.1007/s00477-015-1119-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1119-0

Keywords

Navigation