Skip to main content
Log in

A GIS tool for spatiotemporal modeling under a knowledge synthesis framework

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In recent years, there has been a fast growing interest in the space–time data processing capacity of Geographic Information Systems (GIS). In this paper we present a new GIS-based tool for advanced geostatistical analysis of space–time data; it combines stochastic analysis, prediction, and GIS visualization technology. The proposed toolbox is based on the Bayesian Maximum Entropy theory that formulates its approach under a mature knowledge synthesis framework. We exhibit the toolbox features and use it for particulate matter spatiotemporal mapping in Taipei, in a proof-of-concept study where the serious preferential sampling issue is present. The proposed toolbox enables tight coupling of advanced spatiotemporal analysis functions with a GIS environment, i.e. QGIS. As a result, our contribution leads to a more seamless interaction between spatiotemporal analysis tools and GIS built-in functions; and utterly enhances the functionality of GIS software as a comprehensive knowledge processing and dissemination platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In literature, the terms “prediction” and “estimation” are often used interchangeably. In the following, we distinguish between the two terms and follow the statistical vernacular that calls prediction the inference of random variable values, and estimation the inference tasks where unknown parameters are involved.

References

  • Akita Y, Serre M (2009) BMEGUI user manual. Department of Environmental Sciences and Enginnering, School of Public Health, University of North Carolina

  • Baz I, Geymen A, Er SN (2009) Development and application of GIS-based analysis/synthesis modeling techniques for urban planning of Istanbul Metropolitan Area. Adv Eng Softw 40(2):128–140

    Article  Google Scholar 

  • Bennett ND, Croke BFW, Guariso G, Guillaume JHA, Hamilton SH, Jakeman AJ, Marsili-Libelli S, Newham LTH, Norton JP, Perrin C, Pierce SA, Robson B, Seppelt R, Voinov AA, Fath BD, Andreassian V (2013) Characterising performance of environmental models. Environ Model Softw 40:1–20

    Article  Google Scholar 

  • Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis with R. Springer, New York

    Google Scholar 

  • Bogaert P, Christakos G, Jerrett M, Yu HL (2009) Spatiotemporal modelling of ozone distribution in the State of California. Atmos Environ 43(15):2471–2480

    Article  CAS  Google Scholar 

  • Câmara G, Vinhas L, Ferreira KR, deQueiroz GR, Souza RCMD, Monteiro AMV, Carvalho MTD, Casanova MA, deFreitas UM (2008) TerraLib: an open source gis library for large-scale environmental and socio-economic applications. In: Hall B, Leahy MG (eds) Open source approaches in spatial data handling. Springer, Berlin

    Google Scholar 

  • Chiles J-P, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  • Choi KM, Yu HL, Wilson ML (2008) Spatiotemporal statistical analysis of influenza mortality risk in the State of California during the period 1997–2001. Stoch Env Res Risk Assess 22:S15–S25

    Article  Google Scholar 

  • Christakos G (1990) A Bayesian/maximum-entropy view to the spatial estimation problem. Math Geol 22(7):763–776

    Article  Google Scholar 

  • Christakos G (1992) Random field models in earth sciences. Academic Press Inc, San Diego

    Google Scholar 

  • Christakos G (2000) Modern spatiotemporal geostatistics. Oxford Univ. Press, New York

    Google Scholar 

  • Christakos G (2002) On the assimilation of uncertain physical knowledge bases: Bayesian and non-Bayesian techniques. Adv Water Resour 25(8–12):1257–1274

    Article  Google Scholar 

  • Christakos G (2010) Integrative problem-solving in a time of decadence. Springer, New York

    Google Scholar 

  • Christakos G, Hristopulos DT (1998) Spatiotemporal environmental health modelling: a tractatus stochasticus. Kluwer Academic, Boston

    Book  Google Scholar 

  • Christakos G, Serre ML (2000a) BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmos Environ 34(20):3393–3406

    Article  CAS  Google Scholar 

  • Christakos G, Serre ML (2000b) Spatiotemporal analysis of environmental exposure-health effect associations. J Expo Anal Environ Epidemiol 10(2):168–187

    Article  CAS  Google Scholar 

  • Christakos G, Bogaert P, Serre ML (2002) Temporal GIS: advanced functions for field-based applications. Springer-Verlag, New York

    Google Scholar 

  • Christakos G, Olea RA, Serre ML, Yu H-L, Wang L (2005) Interdisciplinary public health reasoning and epidemic modelling: the case of black death. Springer-Verlag, New York

    Google Scholar 

  • Chuang M-T, Chiang P-C, Chan C-C, Wang C-F, Chang EE, Lee C-T (2008) The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Sci Total Environ 399(1–3):128–146

    Article  CAS  Google Scholar 

  • Clark V (2004) SAS/STAT 9.1 user’s guide, In: Institute, S. (Ed.). SAS Pub: Cary, N.C., p. 7 v. ill. 28 cm

  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on Loess. J Off Stat 6(1):3–73

    Google Scholar 

  • Cressie N (1985) Fitting variogram models by weighted least-squares. J Int Assoc Math Geol 17(5):563–586

    Article  Google Scholar 

  • Cressie N, Huang HC (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J Am Stat Assoc 94(448):1330–1340

    Article  Google Scholar 

  • Dahal KR, Chow TE (2014) A GIS toolset for automated partitioning of urban lands. Environ Model Softw 55:222–234

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB geostatistical software library and user’s guide, 2.0, 2nd ed. Oxford University Press, New York, p 1 (computer laser optical disc)

  • Diggle P (1990) Time series: a biostatistical introduction. Oxford University Press, Oxford

    Google Scholar 

  • Diggle PJ, Menezes R, Su TL (2010) Geostatistical inference under preferential sampling. J R Stat Soc Ser C 59:191–232

    Article  Google Scholar 

  • Gebberta S, Pebesma E (2014) A temporal GIS for field based environmental modeling. Environ Model Softw 53:1–12

    Article  Google Scholar 

  • Goodchild ME (2003) Geographic information science and systems for environmental management. Annu Rev Environ Resour 28:493–519

    Article  Google Scholar 

  • Goodchild MF, Haining RP (2004) GIS and spatial data analysis: converging perspectives. Papers in Regional Science 83(1):363–385

    Article  Google Scholar 

  • Goodchild MF, Yuan M, Cova TJ (2007) Towards a general theory of geographic representation in GIS. Int J Geogr Inf Sci 21(3):239–260

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Hardisty F, Peuquet DJ, Robinson AC, Xu S, Stehle S (2012) STempo: finding patterns in space-time events. In: The 108th annual meeting of the Association of American Geographers, New York

  • Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95

    Article  Google Scholar 

  • Jian XD, Olea RA, Yu YS (1996) Semivariogram modeling by weighted least squares. Comput Geosci 22(4):387–397

    Article  Google Scholar 

  • Johnston K (2004) ArcGIS 9. Using ArcGIS geostatistical analyst. ESRI, Redlands

    Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London

    Google Scholar 

  • Johnson SG (2015) The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt. Accessed 23 May 2015

  • Kitanidis PK, Shen KF (1996) Geostatistical interpolation of chemical concentration. Adv Water Resour 19(6):369–378

    Article  Google Scholar 

  • Kolovos A, Christakos G, Hristopulos DT, Serre ML (2004) On certain classes of non-separable spatiotemporal covariance models. Adv Water Resour 27:815–830

  • Kolovos A, Skupin A, Jerrett M, Christakos G (2010) Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data. Environ Sci Technol 44(17):6738–6744. doi:10.1021/es1013328

  • Kolovos A, Angulo JM, Modis K, Papantonopoulos G, Wang J-F, Christakos G (2013) Model-driven development of covariances for spatiotemporal environmental health assessment. Environ Monit Assess 185(1):815–831. doi:10.1007/s10661-012-2593-1

  • Kyriakidis PC, Journel AG (1999) Geostatistical space-time models: a review. Math Geol 31(6):651–684

    Article  Google Scholar 

  • Li L, Revesz P (2004) Interpolation methods for spatio-temporal geographic data. Comput Environ Urban Syst 28:201–227

    Article  Google Scholar 

  • Liu SC, Shiu C-J (2001) Asian dust storms and their impact on the air quality of Taiwan. Aerosol Air Qual Res 1(1):1–8

    Google Scholar 

  • Maceachren AM, Wachowicz M, Edsall R, Haug D, Masters R (1999) Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods. Int J Geogr Inf Sci 13(4):311–334

    Article  Google Scholar 

  • Maguire DJ, Batty M, Goodchild MF (2005) GIS, spatial analysis, and modeling, 1st edn. ESRI Press, Redlands

    Google Scholar 

  • Matejicek L, Engst P, Janour Z (2006) A GIS-based approach to spatio-temporal analysis of environmental pollution in urban areas: a case study of Prague’s environment extended by LIDAR data. Ecol Model 199(3):261–277

    Article  Google Scholar 

  • Neteler M, Bowman MH, Landa M, Metz M (2012) GRASS GIS: a multi-purpose open source GIS. Environ Model Softw 31:124–130

    Article  Google Scholar 

  • Obe R, Hsu L (2011) PostGIS in action. Manning, Greenwich

    Google Scholar 

  • Olea RA (2007) Declustering of clustered preferential sampling for histogram and semivariogram inference. Math Geol 39(5):453–467

    Article  Google Scholar 

  • Pardo-Iguzquiza E (1999) VARFIT: a fortran-77 program for fitting variogram models by weighted least squares. Comput Geosci 25(3):251–261

    Article  Google Scholar 

  • Pebesma E (2012) Spacetime: spatio-temporal data in R. J Stat Softw 51(7):1–30

    Article  Google Scholar 

  • Peuquet DJ (2002) Representations of space and time. Guilford Press, New York

    Google Scholar 

  • Pierce FJ, Clay D (2007) GIS applications in agriculture. CRC Press, Boca Raton

    Google Scholar 

  • Powell MJD (2009) The BOBYQA algorithm for bound constrained optimization without derivatives, technical report. Department of Applied Mathematics and Theoretical Physics, Cambridge

  • Pultar E, Cova TJ, Yuan M, Goodchild MF (2010) EDGIS: a dynamic GIS based on space time points. Int J Geogr Inf Sci 24(3):329–346

    Article  Google Scholar 

  • QGIS Development Team (2012) Quantum GIS 1.8 geographic information system API documentation. Open Source Geospatial Foundation Project

  • Reed SE, Boggs JL, Mann JP (2012) A GIS tool for modeling anthropogenic noise propagation in natural ecosystems. Environ Model Softw 37:1–5

    Article  Google Scholar 

  • Rempt B (2001) Python’s PyQt toolkit. Dr Dobbs J 26(1):88

    Google Scholar 

  • Rey SJ, Janikas MV (2006) STARS: space-time analysis of regional systems. Geographical Analysis 38(1):67–86

    Article  Google Scholar 

  • Schmitz O, Karssenberg D, van Deursen WPA, Wesseling CG (2009) Linking external components to a spatio-temporal modelling framework: coupling MODFLOW and PCRaster. Environ Model Softw 24(9):1088–1099

    Article  Google Scholar 

  • Sherman M (2011) Spatial statistics and spatio-temporal data: covariance functions and directional properties. Wiley, Chichester

    Google Scholar 

  • Taylor J, Lai KM, Davies M, Clifton D, Ridley I, Biddulph P (2011) Flood management: prediction of microbial contamination in large-scale floods in urban environments. Environ Int 37(5):1019–1029

    Article  Google Scholar 

  • Vallejos RO, Fabre NN, Batista VD, Acosta J (2013) The application of a general time series model to floodplain fisheries in the Amazon. Environ Model Softw 48:202–212

    Article  Google Scholar 

  • Van Der Knijff JM, Younis J, De Roo APJ (2010) LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. Int J Geogr Inf Sci 24(2):189–212

    Article  Google Scholar 

  • van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy Array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22–30

    Article  Google Scholar 

  • Venigalla MM, Baik BH (2007) GIS-based engineering management service functions: taking GIS beyond mapping for municipal governments. Journal of Computing in Civil Engineering 21(5):331–342

    Article  Google Scholar 

  • Vijay R, Satapathy DR, Nimje B, Nema S, Dhurve S, Gupta A (2009) Development of GIS-based environmental information system: an Indian scenario. International Journal of Digital Earth 2(4):382–392

    Article  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics: an introduction with applications, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Wang XD, Zhong XH, Gao P (2010) A GIS-based decision support system for regional eco-security assessment and its application on the Tibetan Plateau. J Environ Manag 91(10):1981–1990

    Article  Google Scholar 

  • Yanosk JD, Paciorek CJ, Schwartz J, Laden F, Puett R, Suh HH (2008) Spatio-temporal modeling of chronic PM10 exposure for the nurses’ health study. Atmos Environ 42(18):4047–4062

    Article  Google Scholar 

  • Yin L, Shaw SL, Yu HB (2011) Potential effects of ICT on face-to-face meeting opportunities: a GIS-based time-geographic approach. J Transp Geogr 19(3):422–433

    Article  Google Scholar 

  • Yu HL, Wang CH (2010) Retrospective prediction of intraurban spatiotemporal distribution of PM2.5 in Taipei. Atmos Environ 44(25):3053–3065

    Article  CAS  Google Scholar 

  • Yu H-L, Kolovos A, Christakos G, Chen J-C, Warmerdam S, Dev B (2007) Interactive spatiotemporal modelling of health systems: the SEKS–GUI framework. Stoch Env Res Risk Assess 21(5):555–572

    Article  Google Scholar 

  • Yu H-L, Wang C-H, Wu Y-Z (2009a) An automatic approach to the mean and covariance estimations of spatiotemporal nonstationary processes, In: Pilz, J. (ed) The StatGIS Conference, Milos

  • Yu HL, Chen JC, Christakos G, Jerrett M (2009b) BME estimation of residential exposure to ambient PM10 and ozone at multiple time scales. Environ Health Perspect 117(4):537–544

    Article  CAS  Google Scholar 

  • Yu H-L, Ku S-C, Yang C-H, Cheng T-J, Chen L (2011a) Assessment of areal average air quality level over irregular areas: a case study of PM10 exposure estimation in Taipei (Taiwan). In: Nejadkoorki F (ed) Advanced air pollution. InTech, Rijeka

    Google Scholar 

  • Yu HL, Wang CH, Liu MC, Kuo YM (2011b) Estimation of fine particulate matter in Taipei using landuse regression and Bayesian maximum entropy methods. Int J Environ Res Public Health 8(6):2153–2169

    Article  Google Scholar 

  • Yu HL, Yang SJ, Yen HJ, Christakos G (2011c) A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan. Stoch Env Res Risk Assess 25(4):485–494

    Article  Google Scholar 

  • Yu H-L, Ku S-C, Kolovos A (2012) Advanced space-time predictive analysis with STBME. In: SIGSPATIAL 2012 international conference on advances in geographic information systems proceedings, Redondo Beach

  • Yuan M (2001) Representing complex geographic phenomena in GIS. Cartogr Geogr Inf Sci 28:83–96

    Article  Google Scholar 

  • Yuan M (2009) Challenges and critical issues for temporal GIS research and technologies. In: Karimi HA (ed) Handbook of Research on Geoinformatics. IGI Global, Hershey, pp 144–153

    Chapter  Google Scholar 

  • Zagouras A, Kolovos A, Coimbra CFM (2015) Objective framework for optimal distribution of solar irradiance monitoring networks. Renew Energy 80:153–165. doi:10.1016/j.renene.2015.01.046

    Article  Google Scholar 

Download references

Acknowledgments

This research is partially supported by funds from National Science Council of Taiwan (NSC101-2628-E-002-017-MY3, NSC102-2221-E-002-140-MY3), and a fund from National Taiwan University (NTU-101R7844).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa-Lung Yu.

Appendix 1

Appendix 1

The BME method incorporates the two knowledge bases G-KB and S-KB by means of the following pair of equations:

$$ \begin{aligned} & \int {d\chi } (g - \bar{g})e^{{u^{T} g}} = 0 \\ & \int {d\chi } \zeta _{s} e^{{u^{T} g}} - Af_{K} (\chi ) = 0 \\ \end{aligned} $$
(1)

where g is a vector of g-functions (α = 1, 2,…) that represents stochastically the G-KB under consideration (the bar denotes statistical expectation). In Eq. (1), μ is a vector of μ α-coefficients that depends on the space–time coordinates and is associated with g. Specifically, the μ α express the relative significance of each g-function in the composite solution sought. The maximum entropy principle is employed to enable incorporation of as many relevant G-KB sources available in an initial prior stage. Mathematically, it formulates the prior probability density function (PDF) \( e^{{u^{T} g}} \) that is constrained by the G-KB, as shown in the first equation of Eq. (1). The second equation of Eq. (A1) represents succinctly the second stage in BME analysis, known as posterior of integration stage, where \( \zeta_{s} \) represents the S-KB available, and A is a normalization parameter. The integration stage uses operational Bayesian updating theory (Christakos 2002) to conditionalize the site-specific S-KB on the prior G-KB. By doing so, it effectively blends all available information about our attribute to produce posterior PDFs, designated as f K , across all space and time locations we seek results. The g and \( \zeta_{s} \) are the inputs in Eq. (1), whereas the unknown are the μ and f K across space–time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, HL., Ku, SC. & Kolovos, A. A GIS tool for spatiotemporal modeling under a knowledge synthesis framework. Stoch Environ Res Risk Assess 30, 665–679 (2016). https://doi.org/10.1007/s00477-015-1078-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1078-5

Keywords

Navigation