Skip to main content

Advertisement

Log in

Impacts of climate change on hydrological processes in the Tibetan Plateau: a case study in the Lhasa River basin

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Climate change has great impacts on hydrological processes worldwide. The Tibetan Plateau (TP), the “Water Tower” of Asia, poses significant influences on Asian climate and is also one of the most sensitive areas to climate change. Therefore, it is of importance to investigate the plausible future hydrological regimes in the TP based on the climate scenarios provided by General Circulation Models (GCMs). In this study, the Variable Infiltration Capacity model was coupled with Shuffled Complex Evolution developed at the University of Arizona to explore the responses of hydrological processes to climate change in the Lhasa River basin, the tributary of the Yarlung Zangbo River in the southern TP. A downscaling framework based on Automatic Statistical Downscaling was used to generate the future climate data from two GCMs (Echam5 and Miroc3.2_Medres) under three scenarios (A1B, A2 and B1) for the period of 2046–2065. Results show increases for both air temperature and annual precipitation in the future climate. Evaporation, runoff and streamflow will experience a rising trend, whereas spring snow cover will reduce dramatically. These changes present significant spatial and temporal variations. The alteration of hydrological processes may challenge the local water resource management. This study is helpful for policy makers to tackle climate change related issues in terms of mitigation and adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309. doi:10.1038/nature04141

    Article  CAS  Google Scholar 

  • Bolch T, Kulkarni A, Kaab A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan Glaciers. Science 336:310–314. doi:10.1126/science.1215828

    Article  CAS  Google Scholar 

  • Brown ME, Funk CC (2008) Food security under climate change. Science 319:580–581. doi:10.1126/science.1154102

    Article  CAS  Google Scholar 

  • Casado MJ, Pastor MA (2011) Use of variability modes to evaluate AR4 climate models over the Euro-Atlantic region. Clim Dyn 38:225–237. doi:10.1007/s00382-011-1077-2

    Article  Google Scholar 

  • Duan QY, Gupta VK, Sorooshian S (1993) Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl 76:501–521. doi:10.1007/Bf00939380

    Article  Google Scholar 

  • Duan QY, Sorooshian S, Gupta VK (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models. J Hydrol 158:265–284. doi:10.1016/0022-1694(94)90057-4

    Article  Google Scholar 

  • Fu GB, Liu ZF, Charles SP, Xu ZX, Yao ZJ (2013) A score-based method for assessing the performance of GCMs: a case study of southeastern Australia. J Geophys Res 118:4154–4167. doi:10.1002/jgrd.50269

    Google Scholar 

  • Guan ZH, Chen CY, Ou YX, Fan YQ, Zhang YS, Chen ZM, Bao SH, Zu YT, He XW, Zhang MT (1984) Rivers and lakes in Tibet. Science and Technology Press, Beijing (in Chinese)

  • Guo DL, Wang HJ, Li D (2012) A projection of permafrost degradation on the Tibetan Plateau during the 21st century. J Geophys Res. doi:10.1029/2011jd016545

    Google Scholar 

  • Hessami M, Gachon P, Ouarda TBMJ, St-Hilaire A (2008) Automated regression-based statistical downscaling tool. Environ Model Softw 23:813–834. doi:10.1016/j.envsoft.2007.10.004

    Article  Google Scholar 

  • Hostetler SW, Bartlein PJ, Clark PU, Small EE, Solomon AM (2000) Simulated influences of Lake Agassiz on the climate of central North America 11,000 years ago. Nature 405:334–337. doi:10.1038/35012581

    Article  CAS  Google Scholar 

  • Immerzeel WW, Bierkens MFP (2010) Seasonal prediction of monsoon rainfall in three Asian river basins: the importance of snow cover on the Tibetan Plateau. Int J Climatol 30:1835–1842. doi:10.1002/joc.2033

    Google Scholar 

  • Immerzeel WW, van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328:1382–1385. doi:10.1126/science.1183188

    Article  CAS  Google Scholar 

  • IPCC (2000) Special report on emissions scenarios: a special report of Working Group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ji Z, Kang S (2013) Projection of snow cover changes over China under RCP scenarios. Clim Dyn 41:589–600. doi:10.1007/s00382-012-1473-2

    Article  Google Scholar 

  • Ju H, van der Velde M, Lin ED, Xiong W, Li YC (2013) The impacts of climate change on agricultural production systems in China. Clim Change 120:313–324. doi:10.1007/s10584-013-0803-7

    Article  Google Scholar 

  • Kang SC, Xu YW, You QL, Flugel WA, Pepin N, Yao TD (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett. doi:10.1088/1748-9326/5/1/015101

    Google Scholar 

  • Li X, Cheng GD, Lu L (2003) Comparison study of spatial interpolation methods of air temperature over Qinghai-Xizang Plateau. Plateau Meteorol 22:565–574 (in Chinese)

    Google Scholar 

  • Li FP, Xu ZX, Feng YC, Liu M, Liu WF (2012) Changes of land cover in the Yarlung Tsangpo River basin from 1985 to 2005. Environ Earth Sci 68:181–188. doi:10.1007/s12665-012-1730-z

    Article  Google Scholar 

  • Li FP, Zhang YQ, Xu ZX, Teng J, Liu CM, Liu WF, Mpelasoka F (2013) The impact of climate change on runoff in the southeastern Tibetan Plateau. J Hydrol 505:188–201. doi:10.1016/j.jhydrol.2013.09.052

    Article  Google Scholar 

  • Li FP, Xu ZX, Liu WF, Zhang YQ (2014) The impact of climate change on runoff in the Yarlung Tsangpo River basin in the Tibetan Plateau. Stoch Environ Res Risk Assess 28:517–526. doi:10.1007/s00477-013-0769-z

    Article  Google Scholar 

  • Liang X, Xie ZH (2001) A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models. Adv Water Resour 24:1173–1193. doi:10.1016/S0309-1708(01)00032-X

    Article  Google Scholar 

  • Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J Geophys Res 99:14415–14428. doi:10.1029/94jd00483

    Article  Google Scholar 

  • Liang X, Lettenmaier DP, Wood EF (1996a) One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J Geophys Res 101:21403–21422. doi:10.1029/96jd01448

    Article  Google Scholar 

  • Liang X, Wood EF, Lettenmaier DP (1996b) Surface soil moisture parameterization of the VIC-2L model: evaluation and modification. Glob Planet Change 13:195–206. doi:10.1016/0921-8181(95)00046-1

    Article  Google Scholar 

  • Lin X, Zhang Y, Yao Z, Gong T, Wang H, Chu D, Liu L, Zhang F (2008) The trend on runoff variations in the Lhasa River Basin. J Geogr Sci 18:95–106. doi:10.1007/s11442-008-0095-4

    Article  Google Scholar 

  • Liu ZF, Xu ZX, Huang JX, Charles SP, Fu GB (2009) Impacts of climate change on hydrological processes in the headwater catchment of the Tarim River basin, China. Hydrol Process 24:196–208. doi:10.1002/hyp.7493

    Google Scholar 

  • Liu WF, Xu ZX, Li FP, Qiu LH (2013) GCM performance on simulating climatological factors in Yarlung Zangbo River basin based on a ranked score method. J Beijing Normal Univ (Nat Sci) 49:304–311 (in Chinese)

    Google Scholar 

  • Liu WF, Xu ZX, Li FP, Su LQ (2014) Climate change scenarios in the Yarlung Zangbo river basin based on the ASD model. Plateau Meteorol 33:26–36 (in Chinese)

    Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241. doi:10.1007/s10584-011-0156-z

    Article  CAS  Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51. doi:10.1038/nature09364

    Article  CAS  Google Scholar 

  • Prasch M, Weber M, Mauser W (2011) Distributed modelling of snow- and ice-melt in the Lhasa River basin from 1971 to 2080. In: Cold regions hydrology in a changing climate, Proceedings of symposium H02, vol 346. IAHS Publication, Wallingford, pp 57–64

  • Qiu J (2008) The third pole. Nature 454:393–396. doi:10.1038/454393a

    Article  CAS  Google Scholar 

  • Qiu LH, You JJ, Qiao F, Peng DZ (2014) Simulation of snowmelt runoff in ungauged basins based on MODIS: a case study in the Lhasa River basin. Stoch Environ Res Risk Assess. doi:10.1007/s00477-013-0837-4

    Google Scholar 

  • Siderius C, Biemans H, Wiltshire A, Rao S, Franssen WH, Kumar P, Gosain AK, van Vliet MT, Collins DN (2013) Snowmelt contributions to discharge of the Ganges. Sci Total Environ 468:S93–S101. doi:10.1016/j.scitotenv.2013.05.084

    Article  Google Scholar 

  • Sivakumar B (2011) Global climate change and its impacts on water resources planning and management: assessment and challenges. Stoch Environ Res Risk Assess 25:583–600. doi:10.1007/s00477-010-0423-y

    Article  Google Scholar 

  • Sridhar V, Jin X, Jaksa WTA (2012) Explaining the hydroclimatic variability and change in the Salmon River basin. Clim Dyn 40:1921–1937. doi:10.1007/s00382-012-1467-0

    Article  Google Scholar 

  • Su FG, Xie ZH (2003) A model for assessing effects of climate change on runoff in China. Prog Nat Sci 13:701–707. doi:10.1080/10020070312331344270

    Article  Google Scholar 

  • Sun JL, Lei XH, Tian Y, Liao WH, Wang YH (2013) Hydrological impacts of climate change in the upper reaches of the Yangtze River Basin. Quatern Int 304:62–74. doi:10.1016/j.quaint.2013.02.038

    Article  Google Scholar 

  • Trenberth KE (1997) The use and abuse of climate models. Nature 386:131–133. doi:10.1038/386131a0

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/Qj.04.176

    Article  Google Scholar 

  • Viney NR, Perraud JM, Vaze J, Chiew FHS, Post DA, Yang A (2009) The usefulness of bias constraints in model calibration for regionalization to ungauged catchments. In: Interfacing modelling and simulation with mathematical and computational sciences, 18th World IMACS Congress and MODSIM09 international congress on modelling and simulation, pp 3421–3427

  • Wang X, Yang T, Shao Q, Acharya K, Wang W, Yu Z (2013) Statistical downscaling of extremes of precipitation and temperature and construction of their future scenarios in an elevated and cold zone. Stoch Environ Res Risk Assess 26:405–418. doi:10.1007/s00477-011-0535-z

    Article  Google Scholar 

  • West AJ (2008) Geomorphology: mountains and monsoons. Nat Geosci 1:814–815. doi:10.1038/Ngeo369

    Article  CAS  Google Scholar 

  • Wu G, Mao J, Duan A, Zhang Q (2006) Current progresses in study of impacts of the Tibetan Plateau on Asian Summer Climate. Acta Meteorol Sin 20:144–158

    Google Scholar 

  • Xie H, Zhu X (2013) Reference evapotranspiration trends and their sensitivity to climatic change on the Tibetan Plateau (1970–2009). Hydrol Process 27:3685–3693. doi:10.1002/hyp.9487

    Article  Google Scholar 

  • Xie ZH, Su FG, Liang X, Zeng QC, Hao ZC, Guo YF (2003) Applications of a surface runoff model with Horton and Dunne runoff for VIC. Adv Atmos Sci 20:165–172

    Article  Google Scholar 

  • Xu ZX, Gong TL, Li JY (2008) Decadal trend of climate in the Tibetan Plateau—regional temperature and precipitation. Hydrol Process 22:3056–3065. doi:10.1002/hyp.6892

    Article  Google Scholar 

  • Xu ZX, Zhao FF, Li JY (2009) Response of streamflow to climate change in the headwater catchment of the Yellow River basin. Quatern Int 208:62–75. doi:10.1016/j.quaint.2008.09.001

    Article  Google Scholar 

  • Yao T, Li Z, Yang W, Guo X, Zhu L, Kang S, Wu Y, Yu W (2010) Glacial distribution and mass balance in the Yarlung Zangbo River and its influence on lakes. Chin Sci Bull 55:2072–2078. doi:10.1007/s11434-010-3213-5

    Article  Google Scholar 

  • You Q, Kang S, Wu Y, Yan Y (2007) Climate change over the Yarlung Zangbo River Basin during 1961–2005. J Geog Sci 17:409–420. doi:10.1007/s11442-007-0409-y

    Article  Google Scholar 

  • Zhang LL, Su FG, Yang DQ, Hao ZC, Tong K (2013) Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J Geophys Res 118:8500–8518. doi:10.1002/Jgrd.50665

    Google Scholar 

  • Zhao RJ (1992) The Xinanjiang model applied in China. J Hydrol 135:371–381

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2009SC-5). China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/) is greatly appreciated for providing meteorological data used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Xu, Z., Li, F. et al. Impacts of climate change on hydrological processes in the Tibetan Plateau: a case study in the Lhasa River basin. Stoch Environ Res Risk Assess 29, 1809–1822 (2015). https://doi.org/10.1007/s00477-015-1066-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1066-9

Keywords

Navigation