Skip to main content
Log in

Evaluation of reanalysis and satellite-based precipitation datasets in driving hydrological models in a humid region of Southern China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper compares the original and bias corrected global gridded precipitation datasets, tropical rainfall measuring mission (TRMM) and water and global change forcing data (WFD) with gauged precipitation and evaluates the usefulness of gridded precipitation datasets for hydrological simulations using the distributed soil and water assessment tool (SWAT) and lumped Xinanjiang model in Xiangjiang River basin, Southern China. The results show that the differences in areal mean rainfalls of original TRMM and WFD datasets and gauged dataset are in acceptable limits of less than 10 %, while larger differences exist in maximal 5-day rainfalls, dry spells and Fréchet distance. The bias correction methods are able to significantly improve the biases in the mean values of TRMM and WFD datasets. The nonlinear bias correction method gives good results in correcting the standard deviations of TRMM/WFD data. The hydrological modelling results show that the WFD datasets perform relatively better than TRMM datasets even though the results are poor as compared with using gauged rainfall as input in daily step hydrological models. At monthly time step, both TRMM and WFD data produce acceptable model simulation results in terms of Nash–Sutcliffe efficiency (E ns  > 0.7 for original TRMM/WFD data and E ns  > 0.8 for linearly corrected TRMM/WFD data) and relative error (|R E | < 10 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdella Y, Alfredsen K (2010) Long-term evaluation of gauge-adjusted precipitation estimates from a radar in Norway. Hydrol Res 41(3–4):171–192

    Article  Google Scholar 

  • Adjei KA, Ren LL, Appiah-Adjei EK, Odai SN (2014) Application of satellite-derived rainfall for hydrological modelling in the data-scarce Black Volta trans-boundary basin. Hydrol Res. doi:10.2166/nh.2014.111 (in Press)

    Google Scholar 

  • Adler RF, Kidd C, Petty G, Morissey M, Goodman HM (2001) Intercomparison of global precipitation products: the third precipitation intercomparison project (Pip-3). Bull Am Meteorol Soc 82(7):1377–1396

    Article  Google Scholar 

  • Alt H, Godau M (1995) Computing the Fréchet distance between two polygonal curves. Int J Comput Geom Appl 5(01n02):75–91

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development1. JAWRA J Am Water Resour Assoc 34(1):73–89

    Article  CAS  Google Scholar 

  • Bao HJ, Zhao LN, He Y, Li ZJ, Wetterhall F, Cloke HL, Pappenberger F, Manful D (2011) Coupling ensemble weather predictions based on TIGGE database with Grid-Xinanjiang model for flood forecast. Adv Geosci 29(6):61–67

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Hagemann S (2004) Sensitivity of the ERA40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations. Tellus A 56(5):456–471

    Article  Google Scholar 

  • Bengtsson L, Haines K, Hodges KI, Arkin P, Berrisford P, Bougeault P, Kallberg P, Simmons AJ, Uppala S, Folland CK, Gordon C, Rayner N, Thorne PW, Jones P, Stammer D, Vose RS (2007) The need for a dynamical climate reanalysis. Bull Am Meteorol Soc 88(4):495–501

    Article  Google Scholar 

  • Biemans H, Hutjes RWA, Kabat P, Strengers BJ, Gerten D, Rost S (2009) Effects of precipitation uncertainty on discharge calculations for main river basins. J Hydrometeorol 10(4):1011–1025

    Article  Google Scholar 

  • Brent RP (1973) Algorithms for minimization without derivatives. Courier Dover Publications, Mineola

    Google Scholar 

  • Castro LM, Salas MM, Fernández B (2014) Evaluation of TRMM Multi-satellite precipitation analysis (TMPA) in a mountainous region of the central Andes range with a Mediterranean climate. Hydrol Res. doi:10.2166/nh.2013.096 (in Press)

    Google Scholar 

  • Cheema MJM, Bastiaanssen WGM (2012) Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin. Int J Remote Sens 33(8):2603–2627

    Article  Google Scholar 

  • Chouakria-Douzal A, Nagabhushan P (2006) Improved Fréchet distance for time series. Data science and classification, Studies in classification, data analysis, and knowledge organization. Springer, Berlin, pp 13–20

    Google Scholar 

  • Ciach GJ, Morrissey ML, Krajewski WF (2000) Conditional bias in radar rainfall estimation. J Appl Meteorol 39(11):1941–1946

    Article  Google Scholar 

  • Costa MH, Foley JA (1998) A Comparison of precipitation datasets for the Amazon Basin. Geophys Res Lett 25(2):155–158

    Article  CAS  Google Scholar 

  • Cressie N (1988) Spatial prediction and ordinary kriging. Math Geol 20(4):405–421

    Article  Google Scholar 

  • Dankers R, Hiederer R (2008) Extreme temperatures and precipitation in Europe: analysis of a high-resolution climate change scenario. Office for Official Publications of the European Communities Luxembourg, EUR 23291

    Google Scholar 

  • Dosio A, Paruolo P (2011) Bias correction of the ENSEMBLES high‐resolution climate change projections for use by impact models: evaluation on the present climate. J Geophys Res Atmos (1984–2012) 116(D16). doi:10.1029/2011JD015934

  • Driemel A, Har-Peled S (2013) Jaywalking your dog: computing the Fréchet distance with shortcuts. SIAM J Comput 42(5):1830–1866

    Article  Google Scholar 

  • Ebisuzaki W, Kistler R (2000) An examination of a data-constrained assimilation. World Meteorological Organization-Publications-WMO TD, pp 14–17

  • Ehret U, Zehe E (2011) Series distance—an intuitive metric to quantify hydrograph similarity in terms of occurrence, amplitude and timing of hydrological events. Hydrol Earth Syst Sci 15:877–896

    Article  Google Scholar 

  • Faurès JM, Goodrich DC, Woolhiser DA, Sorooshian S (1995) Impact of small-scale spatial rainfall variability on runoff modeling. J Hydrol 173(1):309–326

    Article  Google Scholar 

  • Fekete BM, Vörösmarty CJ, Roads JO, Willmott CJ (2004) Uncertainties in precipitation and their impacts on runoff estimates. J Clim 17(2):294–304

    Article  Google Scholar 

  • Frechet M (1906) Sur quelques points du calcul fonctionnel. Rendiconto del Circolo Mathematico di Palermo 22:1–74

    Article  Google Scholar 

  • Gottschalck J, Meng J, Rodell M, Houser P (2005) Analysis of multiple precipitation products and preliminary assessment of their impact on global land data assimilation system land surface states. J Hydrometeorol 6(5):573–598

    Article  Google Scholar 

  • Grimes DIF, Pardo-Iguzquiza E, Bonifacio R (1999) Optimal areal rainfall estimation using raingauges and satellite data. J Hydrol 222(1):93–108

    Article  Google Scholar 

  • Hu C, Guo S, Xiong L, Peng D (2005) A modified Xinanjiang model and its application in northern China. Nord Hydrol 36:175–192

    Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM Multi satellite precipitation analysis (TCMA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Nelkin EJ, Hossain F, Gebremichael M (2010) The TRMM multi-satellite precipitation analysis (Tmpa). Satellite rainfall applications for surface hydrology. Springer, Netherlands, pp 3–22

    Book  Google Scholar 

  • Kang K, Merwade V (2014) The effect of spatially uniform and non-uniform precipitation bias correction methods on improving NEXRAD rainfall accuracy for distributed hydrologic modeling. Hydrol Res 45(1):23–42. doi:10.2166/nh.2013.194

    Article  Google Scholar 

  • Leander R, Buishand TA (2007) Resampling of regional climate model output for the simulation of extreme river flows. J Hydrol 332(3):487–496

    Article  Google Scholar 

  • Li H, Sheffield J, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from intergovernmental panel on climate change AR4 models using equidistant quantile matching. J Geophys Res Atmos (1984–2012) 115(D10). doi:10.1029/2009JD012882

  • Li XH, Zhang Q, Xu C-Y (2012) Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang Catchment, Poyang Lake Basin. J Hydrol 426:28–38

    Article  Google Scholar 

  • Li L, Ngongondo CS, Xu C-Y, Gong L (2013) Comparison of the global TRMM and WFD precipitation datasets in driving a large-scale hydrological model in Southern Africa. Hydrol Res 44(5):770–778. doi:10.2166/nh.2012.175

    Article  Google Scholar 

  • Li L, Xu C-Y, Zhang ZX, Jain SK (2014) Validation of a new meteorological forcing data in analysis of spatial and temporal variability of precipitation in India. Stoch Env Res Risk Assess 28(2):239–252

    Article  CAS  Google Scholar 

  • Liu J, Chen X, Zhang J, Flury M (2009) Coupling the Xinanjiang model to a kinematic flow model based on digital drainage networks for flood forecasting. Hydrol Process 23:1337–1348

    Article  Google Scholar 

  • Maheshwari A, Sack JR, Shahbaz K, Zarrabi-Zadeh H (2011) Fréchet distance with speed limits. Comput Geom 44(2):110–120

  • Müller MF, Thompson SE (2013) Bias adjustment of satellite rainfall data through stochastic modeling: methods development and application to Nepal. Adv Water Resour 60:121–134

    Article  Google Scholar 

  • Nair S, Srinivasan G, Nemani R (2009) Evaluation of multi-satellite TRMM derived rainfall estimates over a Western State of India. J Meteorol Soc Jpn 87(6):927–939

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2002) Soil and water assessment tool theoretical documentation, version 2000. Texas, USA

  • Nykanen DK, Foufoula-Georgiou E, Lapenta WM (2001) Impact of small-scale rainfall variability on larger-scale spatial organization of land–atmosphere fluxes. J Hydrometeorol 2(2):105–121

    Article  Google Scholar 

  • Oki T, Nishimura T, Dirmeyer P (1999) Assessment of annual runoff from land surface models using total runoff integrating pathways (Trip). J Meteorol Soc Jpn 77(1B):235–255

    Google Scholar 

  • Omotosho TV, Oluwafemi CO (2009) One-minute rain rate distribution in Nigeria derived from TRMM satellite data. J Atmos Solar Terr Phys 71(5):625–633

    Article  Google Scholar 

  • Pan M, Li H, Wood E (2010) Assessing the skill of satellite-based precipitation estimates in hydrologic applications. Water Resour Res 46(9):W09535. doi:10.1029/2009WR008290

    Google Scholar 

  • Parkes BL, Wetterhall F, Pappenberger F, He Y, Malamud BD, Cloke HL (2013) Assessment of a 1-hour gridded precipitation dataset to drive a hydrological model: a case study of the summer 2007 floods in the Upper Severn UK. Hydrol Res 44(1):89–105

    Article  Google Scholar 

  • Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theoret Appl Climatol 99(1–2):187–192

    Article  Google Scholar 

  • Rasmussen KL, Choi SL, Zuluaga MD, Houze RA (2013) TRMM precipitation bias in extreme storms in South America. Geophys Res Lett 40:3457–3461

    Article  Google Scholar 

  • Ren LL, Huang Q, Yuan F, Wang J, Xu J, Yu Z, Liu X (2006) Evaluation of the Xinanjiang model structure by observed discharge and gauged soil moisture data in the HUBEX/GAME project. IAHS Publ 303:153

    Google Scholar 

  • Sawunyama T, Hughes DA (2008) Application of satellite-derived rainfall estimates to extend water resource simulation modelling in South Africa. Water SA 34(1):1–9

    Google Scholar 

  • Scheel MLM, Rohrer M, Huggel C, Villar DS, Silvestre E, Huffman GJ (2011) Evaluation of TRMM multi-satellite precipitation analysis (TMPA) performance in the Central Andes Region and its dependency on spatial and temporal resolution. Hydrol Earth Syst Sci 15(8):2649–2663

    Article  Google Scholar 

  • Singh VP (1995) Computer models of watershed hydrology. Water Resources Publications, Littleton

    Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456:12–29

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The Era-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012

    Article  Google Scholar 

  • Varikoden H, Samah AA, Babu CA (2010) Spatial and temporal characteristics of rain intensity in the Peninsular Malaysia using TRMM rain rate. J Hydrol 387(3):312–319

    Article  Google Scholar 

  • Wang JF, Christakos G, Hu MG (2009) Modeling spatial means of surfaces with stratified nonhomogeneity. IEEE Trans Geosci Remote Sens 47(12):4167–4174

    Article  Google Scholar 

  • Wang JF, Haining R, Cao Z (2010) Sample surveying to estimate the mean of a heterogeneous surface: reducing the error variance through zoning. Int J Geogr Inf Sci 24(4):523–543

    Article  Google Scholar 

  • Wang JF, Reis BY, Hu MG, Christakos G, Yang WZ, Sun Q, Li ZJ, Li XZ, Lai SJ, Chen HY, Wang DC (2011) Area disease estimation based on sentinel hospital records. PLoS One 6(8):e23428

    Article  CAS  Google Scholar 

  • Weedon GP, Gomes S, Viterbo P, Shuttleworth WJ, Blyth E, Österle H, Adam JC, Bellouin N, Boucher O, Best M (2011) Creation of the watch forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J Hydrometeorol 12(5):823–848

    Article  Google Scholar 

  • Wu R, Kinter JL III, Kirtman BP (2005) Discrepancy of interdecadal changes in the Asian region among the NCEP-NCAR reanalysis, objective analyses, and observations. J Clim 18(15):3048–3067

    Article  Google Scholar 

  • Xu CD, Wang JF, Hu MG, Li QX (2013) Interpolation of missing temperature data at meteorological stations using P-BSHADE. J Clim 26(19):7452–7463

    Article  Google Scholar 

  • Yang DQ, Ishida S, Goodison BE, Gunther T (1999) Bias correction of daily precipitation measurements for Greenland. J Geophys Res 104(D6):6171–6181

    Article  Google Scholar 

  • Yao C, Li Z, Bao H, Yu Z (2009) Application of a developed Grid-Xinanjiang Model to Chinese watersheds for flood forecasting purpose. J Hydrol Eng 14:923

    Article  Google Scholar 

  • Zhang DR, Zhang LR, Guan YQ, Chen X, Chen XF (2012a) Sensitivity analysis of Xinanjiang rainfall–runoff model parameters: a case study in Lianghui, Zhejiang province, China. Hydrol Res 43(1–2):123–134

    Article  Google Scholar 

  • Zhang ZX, Xu C-Y, El-Tahir MEH, Cao J, Singh VP (2012b) Spatial and temporal variation of precipitation in Sudan and their possible causes during 1948–2005. Stoch Env Res Risk Assess 26(3):429–441

    Article  Google Scholar 

  • Zhao RJ (1992) The Xinanjiang model applied in China. J Hydrol 135(1):371–381

    Google Scholar 

  • Zhao RJ, Zhuang YL, Fang LR, Liu XR, Zhang QS (1980) The Xinanjiang model. In Hydrological forecasting, IAHS Publication(129) IAHS Press, Wallingford, pp 351–356

  • Zhao RJ, Liu XR, Singh VP (1995) The Xinanjiang model. In: Computer models of watershed hydrology. Water Resources Publications, pp 215–232

  • Zipser EJ, Lutz KR (1994) The vertical profile of radar reflectivity of convective cells: a strong indicator of storm intensity and lightning probability? Mon Weather Rev 122(8):1751–1759

    Article  Google Scholar 

  • Zquiza EP (1998) Comparison of geostatistical methods for estimating the areal average climatological rainfall mean using data on precipitation and topography. Int J Climatol 18:1031–1047

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the two anonymous reviewers and the editor who helped us improving the quality of original manuscript. The authors would like to thank the SinoTropia Project (Watershed EUTROphication management in China through system oriented process modelling of Pressures, Impacts and Abatement actions) who provided the soil distribution map used in SWAT Model. This work was supported by grants from the National Natural Science Foundation of China (Grant No. 61301063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Yu Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Xu, CY., Sælthun, N.R. et al. Evaluation of reanalysis and satellite-based precipitation datasets in driving hydrological models in a humid region of Southern China. Stoch Environ Res Risk Assess 29, 2003–2020 (2015). https://doi.org/10.1007/s00477-014-1007-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-1007-z

Keywords

Navigation