Skip to main content
Log in

Abstract

This study presents a new approach of generating a set of alternative training images (ATI) to use in patch-based multiple-point simulation. The purpose of using ATI is to improve both the conditioning capabilities of the patch-based methods to hard data and the continuity of the conditionally simulated images. The ATIs are produced as a series of unconditional patch-based simulations using unilateral path with weighting and decoupage to improve continuity. A simple strategy is described to control objectively the ATI generation and keep only the few ATIs most useful to ensure hard data conditioning. Hundreds of ATIs are generated, their statistics are compared with that of the original TI and finally an ensemble of ATIs is selected in a pre-simulation step. The CPU time is kept overall at a quite reasonable level over large 2D and 3D grids by the use of fast distance computation by convolutions and FFT. Different examples are considered: categorical or continuous, with small or large TIs. In 2D, the richest database obtained by adding the ATIs enables to ensure 100 % hard data conditioning in all realizations for the categorical examples tested and a very strong correlation coefficient (r = 0.999) in the continuous case. In 3D, the hard data reproduction rate in the simulation is increased. Different possible improvements to the method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  • Allard D, D’Or D, Froidevaux R (2011) An efficient maximum entropy approach for categorical variable prediction. Eur J Soil Sci 62:381–393

    Article  Google Scholar 

  • Armstrong M, Galli A, Beucher H, Loc’h G, Renard D, Doligez B, Eschard R, Geffroy F (2011) Plurigaussian simulations in geosciences. Springer, New York

    Book  Google Scholar 

  • Arpat GB, Caers J (2007) Conditional simulation with patterns. Math Geol 39(2):177–203

    Article  Google Scholar 

  • Borg I, Groenen P (1997) Modern multidimensional scaling: theory and applications. Springer, New York

    Book  Google Scholar 

  • Boucher A (2009) Sub-pixel mapping of coarse satellite remote sensing images with stochastic simulations from training images. Math Geosci 41(3):265–290

    Article  Google Scholar 

  • Caers J, Strebelle S, Payrazyan K (2003) Stochastic integration of seismic data and geologic scenarios: a West Africa submarine channel saga. Lead Edge 22(3):192–196

    Article  Google Scholar 

  • Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New York

    Book  Google Scholar 

  • Deutsch C, Gringarten E (2000) Accounting for multiple-point continuity in geostatistical modeling. In: 6th International geostatistics congress. Geostatistics Association of Southern Africa, pp 156–165

  • Deutsch J, Deutsch C (2014) A multidimensional scaling approach to enforce reproduction of transition probabilities in truncated plurigaussian simulation. Stoch Environ Res Risk Assess 28:707–716

    Article  Google Scholar 

  • Duhamel P, Vetterli M (1990) Fast Fourier transforms: a tutorial review and a state of the art. Signal Process 19(4):259–299

    Article  Google Scholar 

  • Efros AA, Freeman WT (2001) Image quilting for texture synthesis and transfer. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques. ACM, New York, pp 341–346

  • El Ouassini A, Saucier A, Marcotte D, Favis BD (2008) A patchwork approach to stochastic simulation: a route towards the analysis of morphology in multiphase systems. Chaos Solitons Fractals 36(2):418–436

    Article  Google Scholar 

  • Emery X, Lantuéjoul C (2014) Can a training image be a substitute for a random field model? Math Geosci 46:133–147

    Article  Google Scholar 

  • Endres DM, Schindelin JE (2003) A new metric for probability distributions. IEEE Trans Inf Theory 49:1858–1860

    Article  Google Scholar 

  • Faucher C, Saucier A, Marcotte D (2013) A new patchwork simulation method with control of the local-mean histogram. Stoch Environ Res Risk Assess 27(1):253–273

    Article  Google Scholar 

  • Faucher C, Saucier A, Marcotte D (2014) Corrective pattern-matching simulations with controlled local-mean histogram. Stoch Environ Res Risk Assess 28(1):1–24

    Article  Google Scholar 

  • Guardiano F, Srivastava M (1993) Multivariate geostatistics: beyond bivariate moments. Quant Geol Geostat 5:133–144

    Article  Google Scholar 

  • Guo B, Shum H, Xu YQ (2000) Chaos mosaic: fast and memory efficient texture synthesis. Microsoft Research Paper MSR-TR-2000-32

  • Hoffman B, Caers J (2007) History matching by jointly perturbing local facies proportions and their spatial distribution: application to a North Sea reservoir. J Petrol Sci Eng 57(3):257–272

    Article  CAS  Google Scholar 

  • Honarkhah M, Caers J (2010) Stochastic simulation of patterns using distance-based pattern modeling. Math Geosci 42(5):487–517

    Article  Google Scholar 

  • Kjonsberg H, Kolbjornsen O (2008) Markov mesh simulations with data conditioning through indicator kriging. In: Proceedings of the 8th international geostatistics congress, Santiago

  • Lange K, Frydendall J, Cordua K, Hansen T, Melnikova Y, Mosegaard K (2012) A frequency matching method: solving inverse problems by use of geologically realistic prior information. Math Geosci 44(7):783–803

    Article  Google Scholar 

  • Mahmud K, Mariethoz G, Caers J, Tahmasebi P, Baker A (2014) Simulation of earth textures by conditional image quilting. Water Resour Res 50(4):3088–3107

    Article  Google Scholar 

  • Marcotte D (1996) Fast variogram computation with FFT. Comput Geosci 22(10):1175–1186

    Article  Google Scholar 

  • Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res 46(11):W11536

    Google Scholar 

  • Osterholt V, Dimitrakopoulos R (2007) Simulation of orebody geology with multiple-point geostatistics: application at Yandi channel iron ore deposit. WA and implications for resource uncertainty. In: Orebody modelling and strategic mine planning. The Australasian Institute of Mining and Metallurgy, pp 51–60

  • Parra A, Ortiz JM (2011) Adapting a texture synthesis algorithm for conditional multiple point geostatistical simulation. Stoch Environ Res Risk Assess 25(8):1101–1111

    Article  Google Scholar 

  • Pasti HA, Cpsta JF, Boucher A (2012) Multiple-point geostatistics for modeling lithological domains at a Brazilian iron ore deposit using the single normal equations simulation algorithm. In: Abrahamsen P, Hauge R, Kolbjornsen O (eds) Geostatistics Oslo. Springer, New York

    Google Scholar 

  • Portilla J, Simoncelli EP (2000) A parametric texture model based on joint statistics of complex wavelet coefficients. Int J Comput Vis 40(1):49–70

    Article  Google Scholar 

  • Rezaee H, Mariethoz G, Koneshloo M, Asghari O (2013) Multiple-point geostatistical simulation using the bunch-pasting direct sampling method. Comput Geosci 54:293–308

    Article  Google Scholar 

  • Rezaee H, Asghari O, Koneshloo M, Ortiz J (2014) Multiple-point geostatistical simulation of dykes: application at sungun porphyry copper system, Iran. Stoch Environ Res Risk Assess 28:1913–1927

    Article  Google Scholar 

  • Simes RJ (1986) An improved Bonferroni procedure for multiple tests of significance. Biometrika 73(3):751–754

    Article  Google Scholar 

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21

    Article  Google Scholar 

  • Strebelle S, Payrazyan K, Caers J (2002) Modeling of a deepwater turbidite reservoir conditional to seismic data using multiple-point geostatistics. In: SPE annual technical conference and exhibition, SPE Paper 77425

  • Tahmasebi P, Hezarkhani A, Sahimi M (2012) Multiple-point geostatistical modeling based on the cross-correlation functions. Comput Geosci 16(3):779–797

    Article  Google Scholar 

  • Tahmasebi P, Sahimi M, Caers J (2014) MS-CCSIM: accelerating pattern-based geostatistical simulation of categorical variables using a multi-scale search in Fourier space. Comput Geosci 67:75–88

    Article  Google Scholar 

  • Tan X, Tahmasebi P, Caers J (2013) Comparing training-image based algorithms using an analysis of distance. Math Geosci 46:149–169

    Article  Google Scholar 

  • Toftaker H, Tjelmeland H (2013) Construction of binary multi-grid Markov random field prior models from training images. Math Geosci 45(4):383–409

    Article  Google Scholar 

  • Wei LY, Levoy M (2000) Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the 27th annual conference on computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., New York, pp 479–488

  • Zhang T, Switzer P, Journel A (2006) Filter-based classification of training image patterns for spatial simulation. Math Geol 38(1):63–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financed by the NSERC grant of D. Marcotte. Comments from two anonymous reviewers were helpful to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Rezaee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaee, H., Marcotte, D., Tahmasebi, P. et al. Multiple-point geostatistical simulation using enriched pattern databases. Stoch Environ Res Risk Assess 29, 893–913 (2015). https://doi.org/10.1007/s00477-014-0964-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0964-6

Keywords

Navigation