Skip to main content

Advertisement

Log in

Impact of climate change on hydrological extremes in the Yangtze River Basin, China

Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The recent (1970–1999) and future (2070–2099) climates under the SRES A1B scenario, simulated by the regional climate model RegCM4.0 driven with lateral boundary conditions from the ECHAM5 general circulation model, are utilized to force a large-scale hydrological model for assessing the hydrological response to climate changes in the Yangtze River Basin, China. The variable infiltration capacity model (VIC) is utilized to simulate various hydrological components for examining the changes in streamflow at various locations throughout the Yangtze River Basin. In the end of the twenty-first century, most of the Yangtze River Basin stands out as “hotspots” of climate change in China, with an annual temperature increase of approximately 3.5 °C, an increase of annual precipitation in North and a decrease in South. Runoff in the upper reach of Yangtze River is projected to increase throughout the year in the future, especially in spring when the increase will be approximately 30 %. Runoff from the catchments in the northern part of Yangtze River will increase by approximately 10 %, whereas that in the southern part will decrease, especially in the dry season, following precipitation changes. The frequency of extreme floods at three mainstream stations (Cuntan, Yichang, and Datong) is projected to increase significantly. The original extreme floods with return periods of 50, 20, and 10 years will change into floods with return periods of no more than 20, 10, and 5 years. The projected increase in extreme floods will have significant impacts on water resources management and flood control systems in the Yangtze River Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed KF, Wang G, Silander J, Wilson AM, Allen JM, Horton R, Anyah R (2013) Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. Northeast. Glob Planet Change 100:320–332. doi:10.1016/j.gloplacha.2012.11.003

    Article  Google Scholar 

  • Alkama R, Marchand L, Ribes A, Decharme B (2013) Detection of global runoff changes: results from observations and CMIP5 experiments. Hydrol Earth Syst Sci 17:2967–2979. doi:10.5194/hess-17-2967-2013

    Article  Google Scholar 

  • Arnell NW (2011) Uncertainty in the relationship between climate forcing and hydrological response in UK catchments. Hydrol Earth Syst Sci 15:897–912. doi:10.5194/hess-15-897-2011

    Article  Google Scholar 

  • Bergström S, Carlsson B, Gardelin M, Lindström G, Pettersson A, Rummukainen M (2001) Climate change impacts on runoff in Sweden?assessments by global climate models, dynamical downscaling and hydrological modelling. Clim Res 16:101–112. doi:10.3354/cr016101

    Article  Google Scholar 

  • Blender R, Fraedrich K (2006) Long-term memory of the hydrological cycle and river runoffs in China in a high-resolution climate model. Int J Climatol 26:1547–1565. doi:10.1002/joc.1325

    Article  Google Scholar 

  • Block PJ, Souza Filho FA, Sun L, Kwon HH (2009) A streamflow forecasting framework using multiple climate and hydrological models. J Am Water Resour Assoc 45:828–843. doi:10.3354/cr016101

    Article  Google Scholar 

  • Chen J, Brissette FP, Poulin A, Leconte R (2011a) Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour Res 47:W12509. doi:10.1029/2011WR010602

    Google Scholar 

  • Chen W, Jiang Z, Li L (2011b) Probabilistic Projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J Clim 24:4741–4756. doi:10.1175/2011JCLI4102.1

    Article  Google Scholar 

  • Chen J, Wu X, Finlayson BL, Webber M, Wei T, Li M, Chen Z (2014) Variability and trend in the hydrology of the Yangtze River, China: annual precipitation and runoff. J Hydrol 513:403–412. doi:10.1016/j.jhydrol.2014.03.044

    Article  Google Scholar 

  • Cherkauer KA, Bowling LC, Lettenmaier DP (2003) Variable infiltration capacity cold land process model updates. Glob Planet Change 38:151–159. doi:10.1016/S0921-8181(03)00025-0

    Article  Google Scholar 

  • Chiew FHS, Teng J, Vaze J, Post DA, Perraud JM, Kirono DGC, Viney NR (2009) Estimating climate change impact on runoff across southeast Australia: method, results, and implications of the modeling method. Water Resour Res 45:W10414. doi:10.1029/2008WR007338

    Google Scholar 

  • Christensen NS, Wood AW, Voisin N, Lettenmaier DP, Palmer RN (2004) The effects of climate change on the hydrology and water resources of the Colorado River basin. Clim Change 62:337–363. doi:10.1023/B:CLIM.0000013684.13621.1f

    Article  Google Scholar 

  • Dai A, Qian T, Trenberth KE, Milliman JD (2009) Changes in continental freshwater discharge from 1948 to 2004. J Clim 22:2773–2792. doi:10.1175/2008JCLI2592.1

    Article  Google Scholar 

  • Dickinson RE, Errico RM, Giorgi F, Bates GT (1989) A regional climate model for the western United States. Clim Change 15:383–422. doi:10.1007/BF00240465

    Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi:10.1126/science.289.5487.2068

    Article  CAS  Google Scholar 

  • Elguindi N, Bi XQ, Giorgi F, Nagarajan B, Pal JS, Solmon F, Rauscher SA, Zakey A, Giuliani G (2011) Regional climatic model RegCM user mannual version 4.1., The Abdus Salam International Centre for Theoretical Physics Strada Costiera, Trieste

  • Etchevers P, Golaz C, Habets F, Noilhan J (2002) Impact of a climate change on the Rhone river catchment hydrology. J Geophys Res 107:4293. doi:10.1029/2001JD000490

    Article  Google Scholar 

  • Ferreira VG, Gong Z, He X, Zhang Y, Andam Akorful SA (2013) Estimating total discharge in the Yangtze River Basin using satellite-based observations. Remote Sens 5:3415–3430. doi:10.3390/rs5073415

    Article  Google Scholar 

  • Ge Y, Dou W, Gu Z, Qian X, Wang J, Xu W, Shi P, Ming X, Zhou X, Chen Y (2013) Assessment of social vulnerability to natural hazards in the Yangtze River Delta, China. Stoch Env Res Risk A. 27:1899–1908. doi:10.1007/s00477-013-0725-y

    Article  Google Scholar 

  • Giorgi F (1990) Simulation of regional climate using a limited area model nested in a general circulation model. J Clim 3:941–963. doi:10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC and Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. doi:10.3354/cr01018

  • Graham L, Andréasson J, Carlsson B (2007) Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—a case study on the Lule River basin. Clim Change 81:293–307. doi:10.1007/s10584-006-9215-2

    Article  Google Scholar 

  • Gu H, Wang G, Yu Z, Mei R (2012) Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model. Clim Change 114:301–317. doi:10.1007/s10584-012-0411-y

    Article  Google Scholar 

  • Gu H, Yu Z, Wang J, Ju Q, Yang C, Fan C (2014) Climate change hotspots identification in China through the CMIP5 global climate model ensemble. Adv Meteorol 2014:963196. doi:10.1155/2014/963196

    Article  Google Scholar 

  • Guo J, Guo S, Li Y, Chen H, Li T (2013) Spatial and temporal variation of extreme precipitation indices in the Yangtze River basin, China. Stoch Env Res Risk A 27:459–475. doi:10.1007/s00477-012-0643-4

    Article  Google Scholar 

  • Hansen MC, Defries RS, Yownshend JRG, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21:1331–1364. doi:10.1080/014311600210209

    Article  Google Scholar 

  • Hidalgo HG, Amador JA, Alfaro EJ, Quesada B (2013) Hydrological climate change projections for Central America. J Hydrol 495:94–112. doi:10.1016/j.jhydrol.2013.05.004

    Article  Google Scholar 

  • Horrevoets AC, Savenije HHG, Schuurman JN, Graas S (2004) The influence of river discharge on tidal damping in alluvial estuaries. J Hydrol 294:213–228. doi:10.1016/j.jhydrol.2004.02.012

    Article  Google Scholar 

  • Huang J, Zhang J, Zhang Z, Xu C, Wang B, Yao J (2011) Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method. Stoch Env Res Risk A 25:781–792. doi:10.1007/s00477-010-0441-9

    Article  Google Scholar 

  • Huang J, Zhang J, Zhang Z, Xu C (2013) Spatial and temporal variations in rainfall erosivity during 1960–2005 in the Yangtze River basin. Stoch Env Res Risk A 27:337–351. doi:10.1007/s00477-012-0607-8

    Article  Google Scholar 

  • IPCC (2000) IPCC sepcial report on emissions scenario: summary for policymakers. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical basis. Contribution of working group 1 to the fouth assessment report of the IPCC. Cambridge University Press, New York

  • IPCC (2013) Climate change 2013: the physical basis. Contribution of working group 1 to the fifth assessment report of the IPCC. Cambridge University Press, New York

  • Jha MK, Gassman PW (2014) Changes in hydrology and streamflow as predicted by a modelling experiment forced with climate models. Hydrol Process 28:2772–2781. doi:10.1002/hyp.9836

    Article  Google Scholar 

  • Jiang B, Sun Z, Liu M (2010) China’s energy development strategy under the low-carbon economy. Energy 35:4257–4264. doi:10.1016/j.energy.2009.12.040

    Article  Google Scholar 

  • Ju Q, Yu Z, Hao Z, Ou G, Wu Z, Yang C, Gu H (2014) Response of hydrologic processes to future climate changes in the Yangtze River Basin. J Hydrol Eng 19:211–222. doi:10.1061/(ASCE)HE.1943-5584.0000770

    Article  Google Scholar 

  • Kay AL, Davies HN, Bell VA, Jones RG (2009) Comparison of uncertainty sources for climate change impacts: flood frequency in England. Clim Change 92:41–63. doi:10.1007/s10584-008-9471-4

    Article  Google Scholar 

  • Krakauer NY, Fung I (2008) Mapping and attribution of change in streamflow in the coterminous United States. Hydrol Earth Syst Sci 12:1111–1120. doi:10.5194/hess-12-1111-2008

    Article  Google Scholar 

  • Lai X, Jiang J, Yang G, Lu XX (2014) Should the Three Gorges Dam be blamed for the extremely low water levels in the middle–lower Yangtze River? Hydrol Process 28:150–160. doi:10.1002/hyp.10077

    Article  Google Scholar 

  • Li J, Liu Y, Wu G (2009) Cloud radiative forcing in Asian monsoon region simulated by IPCC AR4 AMIP models. Adv Atmos Sci 26:923–939. doi:10.1007/s00376-009-8111-x

    Article  Google Scholar 

  • Liang X, Lettennmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res 99:14415–14428. doi:10.1029/94JD00483

    Article  Google Scholar 

  • Liang X, Wood EF, Lettennmaier DP (1996) Surface soil moisture parameterization of the VIC-2L model: evaluation and modifications. Glob Planet Change 13:195–206. doi:10.1016/0921-8181(95)00046-1

    Article  Google Scholar 

  • Lohmann D, Raschke E, Nijssen B, Lettenmaier DP (1998) Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrolog Sci J 43. doi:10.1080/02626669809492107

  • Mkankam Kamga F (2001) Impact of greenhouse gas induced climate change on the runoff of the Upper Benue River (Cameroon). J Hydrol 252:145–156. doi:10.1016/S0022-1694(01)00445-0

    Article  Google Scholar 

  • MWR (1993) Regulation for calculating design flood of water resources and hydropower projects (LS44-93). China Water Power Press, Beijing. (in Chinese)

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models 1: a discussion of priciples. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Nijssen B, Lettenmaier DP, Liang X, Wetzel SW, Wood E (1997) Streamflow simulation for continental-scale river basins. Water Resour Res 33:711–724. doi:10.1029/96WR03517

    Article  Google Scholar 

  • Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate model over Europe. Theor Appl Climatol 99:187–192. doi:10.1007/s00704-009-0134-9

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MD, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime: a paradigm for river conservation and restoration. Bioscience 47. doi:10.2307/1313099

  • Raje D, Priya P, Krishnan R (2014) Macroscale hydrological modelling approach for study of large scale hydrologic impacts under climate change in Indian river basins. Hydrol Process 28:1874–1889. doi:10.1002/hyp.9731

    Article  Google Scholar 

  • Reynolds CA, Jackson TJ, Rawls WJ (2000) Estimating soil water-holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour Res 36:3653–3662. doi:10.1029/2000WR900130

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part 1: model description. Max-Planck-Institute for Meteorology, Hamburg

    Google Scholar 

  • Sang Y, Wang Z, Liu C (2013) Spatial and temporal variability of daily temperature during 1961–2010 in the Yangtze River Basin, China. Quat Int 304:33–42. doi:10.1016/j.quaint.2012.05.026

    Article  Google Scholar 

  • Senatore A, Mendicino G, Smiatek G, Kunstmann H (2011) Regional climate change projections and hydrological impact analysis for a Mediterranean basin in Southern Italy. J Hydrol 399:70–92. doi:10.1016/j.jhydrol.2010.12.035

    Article  Google Scholar 

  • Shabalova MV, Van Deursen WPA, Buishand TA (2003) Assessing future discharge of the river Rhine using regional climate model integrations and a hydrological model. Clim Res 23:233–246. doi:10.3354/cr023233

    Article  Google Scholar 

  • Stahl K, Hisdal H, Hannaford J, Tallaksen LM, van Lanen HAJ, Sauquet E, Demuth S, Fendekova M, Odar J (2010) Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrol Earth Syst Sci 14:2367–2382. doi:10.5194/hess-14-2367-2010

    Article  Google Scholar 

  • Steiner AL, Pal JS, Giorgi F, Dickinson RE, Chameides WL (2005) Coupling of the common land model (CLM0) to a regional climate model (RegCM). Theor Appl Climatol 82:225–243. doi:10.1007/s00704-005-0132-5

    Article  Google Scholar 

  • Steiner AL, Pal JS, Rauscher SA, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33:869–892. doi:10.1007/s00382-009-0543-6

    Article  Google Scholar 

  • Su FG, Adam JC, Bowling LC, Lettenmaier DP (2005) Streamflow simulations of the terrestrial Arctic domain. J Geophys Res 110:D8112. doi:10.1029/2004JD005518

    Article  Google Scholar 

  • Su BD, Jiang T, Jin WB (2006) Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theor Appl Climatol 83:139–151. doi:10.1007/s00704-005-0139-y

    Article  Google Scholar 

  • Tang Q, Gao H, Yeh P, Oki T, Su F, Lettenmaier DP (2010) Dynamics of terrestrial water storage change from satellite and surface observations and modeling. J Hydrometeorol 11:156–170. doi:10.1175/2009JHM1152.1

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29. doi:10.1016/j.jhydrol.2012.05.052

    Article  Google Scholar 

  • Thrasher B, Maurer EP, McKellar C, Duffy PB (2012) Technical Note: bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16:3309–3314. doi:10.5194/hess-16-3309-2012

    Article  Google Scholar 

  • Walling DE, Fang D (2003) Recent trends in the suspended sediment loads of the world’s rivers. Glob Planet Change 39:111–126. doi:10.1016/S0921-8181(03)00020-1

    Article  Google Scholar 

  • Wang GL (2005) Agricultural drought in a future climate: results from fifteen global climate models participating in the Inter-governmental Panel for Climate Change’s 4th Assessment. Clim Dyn 25:739–753. doi:10.1007/s00382-005-0057-9

    Article  Google Scholar 

  • Wang T, Watson J (2010) Scenario analysis of China’s emissions pathways in the 21st century for low carbon transition. Energy Policy 38:3537–3546. doi:10.1016/j.enpol.2010.02.031

    Article  Google Scholar 

  • Wang GQ, Zhang JY, Jin JL, Pagano TC, Calow R, Bao ZX, Liu CS, Liu YL, Yan XL (2012) Assessing water resources in China using PRECIS projections and a VIC model. Hydrol Earth Syst Sci 16:231–240. doi:10.5194/hess-16-231-2012

    Article  Google Scholar 

  • Wang Q, Zhang M, Wang S, Ma Q, Sun M (2014) Changes in temperature extremes in the Yangtze River Basin, 1962–2011. J Geog Sci 24:59–75. doi:10.1007/s11442-014-1073-7

    Article  Google Scholar 

  • Wilby RL, Hay LE, Gutowski W, Arritt RW, Takle ES, Pan ZT, Leavesley GH, Clark MP (2000) Hydrological responses to dynamically and statistically downscaled climate model output. Geophys Res Lett 27:1199–1202. doi:10.1029/1999GL006078

    Article  Google Scholar 

  • Woldemeskel FM, Sharma A, Sivakumar B, Mehrotra R (2012) An error estimation method for precipitation and temperature projections for future climates. J Geophys Res 117:D22104. doi:10.1029/2012JD018062

    Google Scholar 

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62:189–216. doi:10.1023/B:CLIM.0000013685.99609.9e

    Article  Google Scholar 

  • Xu CY, Widen E, Halldin S (2005) Modelling hydrological consequences of climate change-progress and challenges. Adv Atmos Sci 22:789–797. doi:10.1007/BF02918679

    Article  Google Scholar 

  • Xu Y, Xu C, Gao X, Luo Y (2009) Projected changes in temperature and precipitation extremes over the Yangtze River Basin of China in the 21st century. Quat Int 208:44–52. doi:10.1016/j.quaint.2008.12.020

    Article  Google Scholar 

  • Yang T, Zhang Q, Chen YD, Tao X, Xu C, Chen X (2008) A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower Yellow River, China. Hydrol Process 22:3829–3843. doi:10.1002/hyp.6993

    Article  Google Scholar 

  • Yang T, Shao Q, Hao Z, Chen X, Zhang Z, Xu C, Sun L (2010) Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China. J Hydrol 380:386–405. doi:10.1016/j.jhydrol.2009.11.013

    Article  Google Scholar 

  • Yang C, Yu Z, Hao Z, Zhang J, Zhu J (2012) Impact of climate change on flood and drought events in Huaihe River Basin, China. Hydrol Res 43:14–22. doi:10.2166/nh.2011.112

    Article  CAS  Google Scholar 

  • Yong B, Ren L, Hong Y, Gourley JJ, Chen X, Dong J, Wang W, Shen Y, Hardy J (2013) Spatial-temporal changes of water resources in a typical semiarid basin of north china over the past 50 years and assessment of possible natural and socioeconomic causes. J Hydrometeorol 14:1009–1034. doi:10.1175/JHM-D-12-0116.1

    Article  Google Scholar 

  • Yu Z, Yang T, Schwartz FW (2014) Water issues and prospects for hydrological science in China. Water Sci Eng 7:1–4. doi:10.3882/j.issn.1674-2370.2014.01.001

    Article  CAS  Google Scholar 

  • Zhang Q, Liu C, Xu C, Xu Y, Jiang T (2006) Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin, China. J Hydrol 324:255–265. doi:10.1016/j.jhydrol.2005.09.023

    Article  Google Scholar 

  • Zhang Q, Xu C, Singh VP, Yang T (2009) Multiscale variability of sediment load and streamflow of the lower Yangtze River basin: possible causes and implications. J Hydrol 368:96–104. doi:10.1016/j.jhydrol.2009.01.030

    Article  Google Scholar 

  • Zhang L, Su F, Yang D, Hao Z, Tong K (2013) Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J Geophys Res 118:8500–8518. doi:10.1002/jgrd.50665

    Google Scholar 

  • Zhang Q, Peng J, Xu C, Singh V (2014) Spatiotemporal variations of precipitation regimes across Yangtze River Basin, China. Theor Appl Climatol 115:703–712. doi:10.1007/s00704-013-0916-y

    Article  Google Scholar 

  • Zhou S, Chen J, Gong P, Xue G (2006) Effects of heterogeneous vegetation on the surface hydrological cycle. Adv Atmos Sci 23:391–404. doi:10.1007/s00376-006-0391-9

    Article  Google Scholar 

  • Zhou Y, Zhang Q, Singh V (2014) Fractal-based evaluation of the effect of water reservoirs on hydrological processes: the dams in the Yangtze River as a case study. Stoch Env Res Risk A 28:263–279. doi:10.1007/s00477-013-0747-5

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (No. 2010CB951101), China Postdoctoral Science Foundation funded project (No. 2013M541598), the program of Dual Innovative Talents Plan and Innovative Research Team in Jiangsu Province, National Natural Science Foundation of China (No. 41323001, 41101015, 41101016 and 51309078), the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongbo Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, H., Yu, Z., Wang, G. et al. Impact of climate change on hydrological extremes in the Yangtze River Basin, China. Stoch Environ Res Risk Assess 29, 693–707 (2015). https://doi.org/10.1007/s00477-014-0957-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0957-5

Keywords

Navigation