Skip to main content
Log in

A PCM-based stochastic hydrological model for uncertainty quantification in watershed systems

Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In this study, an uncertainty quantification framework is proposed for hydrologic models based on probabilistic collocation method (PCM). The PCM method first uses polynomial chaos expansion (PCE) to approximate the hydrological outputs in terms of a set of standard Gaussian random variables, and then estimates the unknown coefficients in the PCE through collocation method. The conceptual hydrologic model, Hymod, is used to demonstrate the applicability of PCM in quantifying uncertainties of the hydrologic predictions. Two parameters in Hymod are considered as uniformly distributed in certain intervals. Two-dimensional 2-order and two-dimensional 3-order PCEs are applied to quantify the uncertainty of Hymod’s predictions. The results indicate that, both 2- and 3-order PCEs can well reflect the uncertainty of the streamflow predictions. The means and variances of 2- and 3-order PCEs are consistent with those obtained by Monte Carlo (MC) simulation method. However, for detailed distributions at selected periods, the histograms obtained by 3-order PCE are more accurate than those generated by 2-order PCE, when compared with the histograms obtained by MC simulation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ballio F, Guadagnini (2004) Convergence assessment of numerical Monte Carlo simulations in groundwater hydrology. Water Resour Res 40:W04603

    Google Scholar 

  • Bárdossy A (2007) Calibration of hydrological model parameters for ungauged catchments. Hydrol Earth Syst Sci 11:703–710

    Article  Google Scholar 

  • Bastola S, Murphy C, Sweeney J (2011) The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments. Adv Water Resour 34:562–576

    Article  Google Scholar 

  • Béal D, Brasseur P, Brankart J-M, Ourmières Y, Verron J (2010) Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis. Ocean Sci 6:247–263

    Article  Google Scholar 

  • Beven KJ, Binley AM (1992) The future of distributed hydrological models: model calibration and uncertainty prediction. Hydrol Process 6:279–298

    Article  Google Scholar 

  • Blanchard ED (2010) Polynomial chaos approaches to parameter estimation and control design for mechanical systems with uncertain parameters. Ph.D Thesis, Department of Mechanical Engineering, Virginia Tech University

  • Boyle D (2001). Multicriteria calibration of hydrological models. Ph.D dissertation, University of Arizona, Tucson AZ

  • Delbari M, Afrasiab P, Loiskandi W (2009) Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content. GATENA 79(2):163–169

    Google Scholar 

  • Diks CGH, Vrugt JA (2010) Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stoch Env Res Risk Assess 24:809–820

    Article  Google Scholar 

  • Fan YR, Huang GH, Veawab A (2012) A generalized fuzzy linear programming approach for environmental management problem under uncertainty. J Air Waste Manag Assoc 62:72–86

    Article  CAS  Google Scholar 

  • Fan YR, Huang GH, Yang AL (2013) Generalized fuzzy linear programming for decision making under uncertainty: feasibility of fuzzy solutions and solving approach. Inf Sci 241:12–27

    Article  Google Scholar 

  • Feyen L, Vrugt JA, Ó Nualláin B, van der Knijff J, De Roo A (2007) Parameter optimization and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model. J Hydrol 332:276–289

    Article  Google Scholar 

  • Feyen L, Kalas M, Vrugt JA (2008) Semi-distributed parameter optimization and uncertainty assessment for large-scale streamflow simulation using global optimization. Hydrol Sci J 53(2):293–308

    Article  Google Scholar 

  • Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach, Springer New York

  • Han JC, Huang GH, Zhang H, Li Z, Li YP (2014) Bayesian uncertainty analysis in hydrological modeling associated with watershed subdivision level: a case study of SLURP model applied to the Xiangxi River watershed, China. Stoch Environ Res Risk Assess. doi:10.1007/s00477-013-0792-0

    Google Scholar 

  • Herman JD, Kollat JB, Reed PM, Wagener T (2013) Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models. Hydrol Earth Syst Sci 17:2893–2903

    Article  Google Scholar 

  • Hostache R, Matgen P, Montanari A, Montanari M, Hoffmann L, Pfister L (2011) Propagation of uncertainties in coupled hydro-meteorological forecasting system: a stochastic approach for the assessment of the total predictive uncertainty. Atmos Res 100:263–274

    Article  Google Scholar 

  • Hu Q, Huang GH, Liu Z, Fan YR, Li W (2012) Inexact fuzzy two-stage programming for water resources management in an environment of fuzziness and randomness. Stoch Env Res Risk Assess 26:261–280

    Article  Google Scholar 

  • Huang S, Mahadevan S, Rebba R (2007) Collocation-based stochastic finite element analysis from random field problems. Probab Eng Mech 22:194–205

    Article  Google Scholar 

  • Isukapalli SS (1999) Uncertainty analysis of transport-transformation models. Ph.D thesis, The State University of New Jersey

  • Kewlani G, Crawford J, Iagnemma K (2012) A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty. Veh Syst Dyn 50:749–774

    Article  Google Scholar 

  • Li H, Zhang D (2007) Probabilistic collocation method for flow in porous media: comparisons with other stochastic method. Water Res Res 43

  • Lucas DD, Prinn RG (2005) Parametric sensitivity and uncertainty analysis of dimethylsulfide oxidation in the clear-sky remote marine boundary layer. Atmos Chem Phys 5:1505–1525

    Article  CAS  Google Scholar 

  • Marzouk YM, Najm HN, Rahn LA (2007) Stochastic spectral methods for efficient Bayesian solution of inverse problems. J Comput Phys 224:560–586

    Article  Google Scholar 

  • Moor RJ (1985) The probability-distributed principle and runoff production at point and basin scales. Hydrol Sci J 30:273–297

    Article  Google Scholar 

  • Moor RJ (2007) The PDM rainfall-runoff model. Hydrol Earth Syst Sci 11(1):483–499

    Article  Google Scholar 

  • Moradkhani H, Sorooshian S, Gupta HV, Houser P (2005a) Dual state: parameter estimation of hydrologic models using ensemble Kalman filter. Adv Water Resour 28:135–147

    Article  Google Scholar 

  • Moradkhani H, Hsu K-L, Gupta HV, Sorooshian S (2005b) Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter. Water Resour Res 41:W05012. doi:10.1029/2004WR003604

    Google Scholar 

  • Schöniger A, Nowak W, Hendricks Franssen H-J (2012) Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography. Water Resour Res 48:W04502

    Google Scholar 

  • Shi L, Yang J, Zhang D, Li H (2009) Probabilistic collocation method for unconfined flow in heterogeneous media. J Hydrol 365:4–10

    Article  Google Scholar 

  • Simon E, Bertino L (2009) Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment. Ocean Sci 5:495–510

    Article  Google Scholar 

  • Tatang MA, Pan W, Prinn RG, McRae GJ (1997) An efficient method for parametric uncertainty analysis of numerical geophysical models. J Geophys Res 102(D18):21925–21931

  • van Delft G (2007) The ensemble particle filter in rainfall-runoff models. M.S. Thesis, Delft University of Technology, Delft, Netherlands

  • van Delft G, EI Serafy GY, Heemink AW (2009) The ensemble particle filter (EnPF) in rainfall-runoff models. Stoch Env Res Risk Assess 23:1203–1211

    Article  Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201

    Google Scholar 

  • Vrugt JA, Diks CGH, Gupta HV, Bouten W, Verstraten JM (2005) Improved treatment of uncertainty in hydrologic modelling: combining the strengths of global optimization and data assimilation. Water Resour Res 41:W01017

    Google Scholar 

  • Vrugt JA, ter Braak CJF, Gupta HV, Robinson BA (2009) Equifinality of formal (DREAM) and informal (GLUE) Bayesian approchches in hydrologic modeling? Stoch Env Res Risk Assess 23:1011–1026

    Article  Google Scholar 

  • Wang D, Chen Y, Cai X (2009) State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter. Water Resour Res 45:W11416

    Google Scholar 

  • Webster M, Tatang MA, Mcrae GJ (1996) Application of the probabilistic collocation method for an uncertainty analysis of a simple ocean model. MIT Joint Program on the Science and Policy of Global Change, Report Series No. 4, Massachusetts Institute of Technology

  • Wiener N (1938) The homogeneous chaos. Am J Math 60:897–936

    Article  Google Scholar 

  • Wu B, Zheng Y, Tian Y, Wu X, Yao Y, Han F, Liu J, Zheng C (2014) Systematic assessment of the uncertainty in integrated surface water-groundwater modelling based on the probabilistic collocation method. Water Resour Res 50:5848–5865

    Article  Google Scholar 

  • Xiu D, Karniadakis GE (2002) The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24:619–644

    Article  Google Scholar 

  • Xiu D, Karniadakis GE (2003) Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys 187:137–167

    Article  Google Scholar 

  • Zheng Y, Wang W, Han F, Ping J (2011) Uncertainty assessment for watershed water quality modeling: a Probabilistic Collocation Method based approach. Adv Water Resour 34:887–898

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China (Nos. 51190095 and 51225904) and the Program for Innovative Research Team in University (IRT1127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y.R., Huang, W., Huang, G.H. et al. A PCM-based stochastic hydrological model for uncertainty quantification in watershed systems. Stoch Environ Res Risk Assess 29, 915–927 (2015). https://doi.org/10.1007/s00477-014-0954-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0954-8

Keywords

Navigation