Skip to main content

Advertisement

Log in

Modelling the effects of fire and rainfall regimes on extreme erosion events in forested landscapes

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Existing models of post-fire erosion have focused primarily on using empirical or deterministic approaches to predict the magnitude of response from catchments given some initial rainfall and burn conditions. These models are concerned with reducing uncertainties associated with hydro-geomorphic transfer processes and typically operate at event timescales. There have been relatively few attempts at modelling the stochastic interplay between fire disturbance and rainfall as factors which determine the frequency and severity with which catchments are conditioned (or primed) for a hazardous event. This process is sensitive to non-stationarity in fire and rainfall regime parameters and therefore suitable for evaluating the effects of climate change and strategic fire management on hydro-geomorphic hazards from burnt areas. In this paper we ask the question, “What is the first-order effect of climate change on the interaction between fire disturbance and storms?” The aim is to isolate the effects of fire and rainfall regimes on the frequency of extreme erosion events. Fire disturbance and storms are represented as independent stochastic processes with properties of spatial extent, temporal duration, and frequency of occurrence, and used in a germ–grain model to quantify the annual area affected by extreme erosion events due to the intersection of fire disturbance and storms. The model indicates that the frequency of extreme erosion events will increase as a result of climate change, although regions with frequent storms were most sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benda L, Dunne T (1997) Stochastic forcing of sediment supply to channel networks from landsliding and debris flow. Water Resour Res 33:2849–2863. doi:10.1029/97WR02388

    Article  Google Scholar 

  • Bisson PA, Rieman BE, Luce C, Hessburg PF, Lee DC, Kershner JL et al (2003) Fire and aquatic ecosystems of the western USA: current knowledge and key questions. Forest Ecol Manage 178:213–229. doi:10.1016/S0378-1127(03)00063-X

    Article  Google Scholar 

  • Bradstock R, Davies I, Price O, and Cary G (2008) Effects of climate change on bushfire threats to biodiversity, ecosystem processes and people in the Sydney region. Climate change impacts and adaptation research project 050831. Report to the New South Wales Department of Environment and Climate Change, pp. 72. http://www.environment.nsw.gov.au/resources/climatechange/BushfireReport2008.pdf.

  • Bradstock RA, Cohn JS, Gill AM, Bedward M, Lucas C (2009) Prediction of the probability of large fires in the Sydney region of south-eastern Australia using fire weather. Int J Wildland Fire 18:932–943. doi:10.1071/WF08133

    Article  Google Scholar 

  • Bradstock RA, Boer MM, Cary GJ, Price OF, Williams RJ, Barrett D et al (2012) Modelling the potential for prescribed burning to mitigate carbon emissions from wildfires in fire-prone forests of Australia. Int J Wildland Fire 21:629–639. doi:10.1071/WF11023

    Article  CAS  Google Scholar 

  • Brown JR, Jakob C, Haynes JM (2010) An evaluation of rainfall frequency and intensity over the Australian region in a global climate model. J Clim 23:6504–6525. doi:10.1175/2010JCLI3571.1

    Article  Google Scholar 

  • Cannon SH (2001) Debris-flow generation from recently burned watersheds. Environ Eng Geosci 7:321–341. doi:10.2113/gseegeosci.7.4.321

    Google Scholar 

  • Cannon SH, Gartner JE (2005) Wildfire-related debris flow from a hazards perspective. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin Heidelberg, pp 363–385

    Chapter  Google Scholar 

  • Cannon SH, Kirkham RM, Parise M (2001) Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado. Geomorphology 39:171–188. doi:10.1016/S0169-555X(00)00108-2

    Article  Google Scholar 

  • Cannon SH, Gartner JE, Wilson RC, Bowers JC, Laber JL (2008) Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology 96:250–269. doi:10.1016/j.geomorph.2007.03.019

    Article  Google Scholar 

  • Cannon SH, Gartner JE, Rupert MG, Michael JA, Rea AH, Parrett C (2010) Predicting the probability and volume of postwildfire debris flows in the intermountain western United States. Geol Soc Am Bull 122:127–144. doi:10.1130/b26459.1

    Article  Google Scholar 

  • Cary GJ, Flannigan MD, Keane RE, Bradstock RA, Davies ID, Lenihan JM et al (2009) Relative importance of fuel management, ignition management and weather for area burned: evidence from five landscape–fire–succession models. Int J Wildland Fire 18:147–156. doi:10.1071/WF07085

    Article  Google Scholar 

  • Cui W, Perera AH (2008) What do we know about forest fire size distribution, and why is this knowledge useful for forest management? Int J Wildland Fire 17:234–244. doi:10.1071/WF06145

    Article  Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD et al (2001) Climate change and forest disturbances. Bioscience 51:723–734. doi:10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO

  • Dowdy AJ, Mills GA, Finkele K, and de Groot W (2009) Australian fire weather as represented by the McArthur Forest Fire Danger Index and the Canadian Forest Fire Weather Index. CAWCR Technical Report No. 10. pp. 91. Centre for Australian Weather and Climate Research. http://cawcr.vm.csiro.au/publications/technicalreports/CTR_010.pdf

  • Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for global wildland fire. Int J Wildland Fire 18:483–507. doi:10.1071/WF08187

    Article  Google Scholar 

  • García-Ruiz JM, Arnáez J, Gómez-Villar A, Ortigosa L, Lana-Renault N (2012) Fire-related debris flows in the Iberian range, Spain. Geomorphology. doi:10.1016/j.geomorph.2012.03.032

    Google Scholar 

  • Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PF, Hennessy KJ et al (1999) Changes in the probability of heavy precipitation: important indicators of climatic change. Clim Change 42:243–283. doi:10.1007/978-94-015-9265-9_15

    Article  Google Scholar 

  • Hall P (1988) Introduction to the theory of coverage processes. Wiley, New York, pp 408

  • Hennessy K, Lucas C, Nicholls N, J Bathols, Suppiah R, and Ricketts J (2005) Climate change impacts on fire-weather in south-east Australia, pp. 91. CSIRO Marine and Atmospheric Research. Aspendale, Victoria

  • Hyde K, Dickinson MB, Bohrer G, Calkin D, Evers L, Gilbertson-Day J et al (2012) Research and development supporting risk-based wildfire effects prediction for fuels and fire management: status and needs. Int Wildland Fire. doi:10.1071/WF11143

    Google Scholar 

  • Istanbulluoglu E, Tarboton DG, Pack RT, and Luce CH (2004) Modeling of the interactions between forest vegetation, disturbances, and sediment yields. J Geophys Res 109: doi:10.1029/2003JF000041

  • Kean JW, Staley DM, and Cannon SH (2011) In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions. J Geophys Res-Earth Surf 116. doi:10.1029/2011jf002005

  • Kirchner JW, Finkel RC, Riebe CS, Granger DE, Clayton JL, King JG et al (2001) Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales. Geology 29:591–594. doi:10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2

    Article  Google Scholar 

  • Leclerc G and Schaake J (1972) Derivation of hydrologic frequency curves. Report 142, pp 15. Massachutes Institure of Technology, Cambridge

  • Loughran RJ, Elliott GL, McFarlane DJ, Campbell BL (2004) A survey of soil erosion in Australia using Caesium-137. Aust Geogr Stud 42:221–233. doi:10.1111/j.1467-8470.2004.00261.x

    Article  Google Scholar 

  • Lucas C, Hennessy K, Mills G, and Bathols J (2007) Bushfire weather in southeast Australia: recent trends and projected climate change impacts. Bushfire Cooperative Research Centre, Melbourne, pp 84

  • Lynch AH, Beringer J, Kershaw P, Marshall A, Mooney S, Tapper N et al (2007) Using the Paleorecord to evaluate climate and fire interactions in Australia. Ann Rev Earth Plan Sci 35:215–239. doi:10.1146/annurev.earth.35.092006.145055

    Article  CAS  Google Scholar 

  • McArthur AG (1967) In Fire behaviour in eucalypt forests [by] AG McArthur. Forestry and Timber Bureau, Canberra

  • Meyer GA, Pierce JL, Wood SH, Jull AJT (2001) Fire, storms, and erosional events in the Idaho batholith. Hydrol Processes 15:3025–3038. doi:10.1002/hyp.389

    Article  Google Scholar 

  • Miller J, Frederick R, and Tracey R (1973) Precipitation-frequency atlas of the western United States. In: White R (ed) NOAA Atlas 2, vol 2. National Oceanic and Atmospheric Administration, Maryland, pp 48

  • Miller D, Luce C, Benda L (2003) Time, space, and episodicity of physical disturbance in streams. Forest Ecol Manage 178:121–140. doi:10.1016/S0378-1127(03)00057-4

    Article  Google Scholar 

  • Moody JA (2012) An analytical method for predicting postwildfire peak discharges. In: Salzar K and McNutt MK (eds) U.S. geological survey scientific investigations report 2011–5236, US Geological Survey, Virginia, pp 1–48

  • Nyman P, Sheridan GJ, Smith HG, Lane PNJ (2011) Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia. Geomorphology 125:383–401. doi:10.1016/j.geomorph.2010.10.016

    Article  Google Scholar 

  • Nyman P, Sheridan GJ, Lane PN (2013) Hydro-geomorphic response models for burned areas and their applications in land management. Prog Phys Geogr 37:787–812. doi:10.1177/0309133313508802

    Article  Google Scholar 

  • Onof C, Chandler RE, Kakou A, Northrop P, Wheater HS, Isham V (2000) Rainfall modelling using poisson-cluster processes: a review of developments. Stoch Environ Res Risk Assess 14:384–411. doi:10.1007/s004770000043

    Article  Google Scholar 

  • Osborn HB, Lane LJ, Myers VA (1980) Rainfall/watershed relationships for southwestern thunderstorms. Trans ASAE 23:82–0087

    Article  Google Scholar 

  • Pierce JL, Meyer GA, Jull AJT (2004) Fire-induced erosion and millennial scale climate change in northern ponderosa pine forests. Nature 432:87–90. doi:10.1038/nature03058

    Article  CAS  Google Scholar 

  • Podur JJ, Martell DL, Stanford D (2010) A compound Poisson model for the annual area burned by forest fires in the province of Ontario. Environmetrics 21:457–469. doi:10.1002/env.996

    Google Scholar 

  • Price OF, Bradstock RA (2011) Quantifying the influence of fuel age and weather on the annual extent of unplanned fires in the Sydney region of Australia. Int J Wildland Fire 20:142–151. doi:10.1071/wf10016

    Article  Google Scholar 

  • Prosser IP, Williams L (1998) The effect of wildfire on runoff and erosion in native Eucalyptus forest. Hydrol Process 12:251–265. doi:10.1002/(SICI)1099-1085(199802)12:2<251:AID-HYP574>3.0.CO;2-4

    Article  Google Scholar 

  • Robichaud PR, Elliot WJ, Pierson FB, Hall DE, Moffet CA (2007) Predicting postfire erosion and mitigation effectiveness with a web-based probabilistic erosion model. Catena 71:229–241. doi:10.1016/j.catena.2007.03.003

    Article  Google Scholar 

  • Smith JD (1985) Modelling of 210Pb behaviour in the catchment and sediment of Lake Tali Karng, Victoria, and estimation of recent sedimentation rates. Mar Freshw Res 36:15. doi:10.1071/MF9850015

    Article  CAS  Google Scholar 

  • Smith HG, Sheridan GJ, Lane PNJ, Nyman P, Haydon S (2011) Wildfire effects on water quality in forest catchments: a review with implications for water supply. J Hydrol 396:170–192. doi:10.1016/j.jhydrol.2010.10.043

    Article  CAS  Google Scholar 

  • Smith HG, Sheridan GJ, Nyman P, Child DP, Lane PNJ, Hotchkis MAC et al (2012) Quantifying sources of fine sediment supplied to post-fire debris flows using fallout radionuclide tracers. Geomorphology 139–140:403–415. doi:10.1016/j.geomorph.2011.11.005

    Article  Google Scholar 

  • Staley D, Kean J, Cannon S, Schmidt K, and Laber J (2012) Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California. Landslides, pp 1–16. doi:10.1007/s10346-012-0341-9

  • Thompson M, Calkin D, Finney M, Ager A, Gilbertson-Day J (2011) Integrated national-scale assessment of wildfire risk to human and ecological values. Stoch Environ Res Risk Assess 25:761–780. doi:10.1007/s00477-011-0461-0

    Article  Google Scholar 

  • Wells G (1987) The effects of fire on the generation of debris flows in southern California. Rev Eng Geol 7:105–114

    Article  Google Scholar 

  • Wheater H, Chandler R, Onof C, Isham V, Bellone E, Yang C et al (2005) Spatial-temporal rainfall modelling for flood risk estimation. Stoch Environ Res Risk Assess 19:403–416. doi:10.1007/s00477-005-0011-8

    Article  Google Scholar 

  • Williams RJ, Bradstock RA, Cary GJ, Gill AM, Liedloff AC, Lucas C et al. (2009) Interactions between climate change, fire regimes and biodiversity in Australia: a preliminary assessment. Report to the Department of Climate Change. Canberra, pp. 208

  • Worthy M (2006) Major erosion events and past fires in the Cotter River Catchment. In Cotter Catchment Remediation Project. Centre for resource and environmental studies, Australian National University, Canberra

  • Worthy M, Wasson R (2004) Fire as an agent of geomorphic change in southeastern Australia: implications for water quality in the Australian Capital Territory. In: Roach ID (ed) Regolith. CRC landscape environments and mineral exploration, Canberra, pp 417–418

    Google Scholar 

Download references

Acknowledgments

The research was carried out with funding from the Bushfire Cooperative Research Centre. Fire and rainfall parameters were obtained using data from Department of Sustainability and Environment and the Australian Bureau of Meteorology. We are also thankful for useful comments and suggestions from the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petter Nyman.

Appendix: Germ and grain model

Appendix: Germ and grain model

Suppose that we have two independent Boolean models in Rk. That is, let \( \left\{ {\xi_{i} } \right\} \) and \( \left\{ {\zeta_{i} } \right\} \) be independent stationary Poisson processes with intensities \( \lambda_{\xi } \) and \( \lambda_{\zeta } \), and let \( \left\{ {X_{i} } \right\} \) and \( \left\{ {Y_{i} } \right\} \) be mutually independent i.i.d. sequences of random sets, then our two models are \( {\mathcal{X}} = \left\{ {\xi_{i} + X_{i} } \right\} \) and \( {\mathcal{Y}} = \left\{ {\zeta_{i} + Y_{i} } \right\} \). Let Ω be a Borel subset of Rk then the intersection of Ω, \(\mathcal{X}\) and \(\mathcal{Y}\) is given by \( A = \Omega \cap \left( { \cup_{i} \xi_{i} + X_{i} } \right) \cap \left( { \cup_{i} \xi_{i} + Y_{i} } \right) \). Let \( \left\| A \right\| \) denote the content (Lebesgue measure) of A, then we have:

1.1 Proposition

If \( \left\| \Omega \right\| < \infty^{{}} \) then \( {\text{E}}\left\| A \right\| = \left\| \Omega \right\|\left( {1 - e^{{ - \lambda_{\xi} {\text{E}}\left\| {{X}} \right\|}} } \right)\left( {1 - e^{{ - \lambda_{\zeta} {\text{E}}\left\| {\text{Y}} \right\|}} } \right) \), where X and Y are random sets, distributed as the X i and Y i respectively. Moreover, let \( \alpha_X\left( x \right) = {\text{E}}\left\| {\left( {x + X} \right) \cap X} \right\| \) and \( \alpha_Y\left( x \right) = {\text{E}}\left\| {\left( {x + Y} \right) \cap Y} \right\| \), then

$${\text{Var}}\left\| A \right\| = \int\limits_{\Omega } {\int\limits_{\Omega }} \left( {\left( {1 - e^{ - \lambda_{\xi} \alpha_{X}(0)} } \right)^{2} e^{ - 2\lambda_{\zeta} \alpha_{Y}(0)} \left( {e^{{\lambda_{\zeta} \alpha_{Y} \left( {x - y} \right)}} - 1} \right)} + \left( {1 - e^{ - \lambda_{\zeta} \alpha_{Y} (0)} } \right)^{2} e^{ - 2\lambda_{\xi} \alpha_X(0)} \left( {e^{{\lambda_{\xi} \alpha_X\left( {x - y} \right)}} - 1} \right) + e^{{ - 2\left( {\lambda_{\xi} \alpha_X(0) + \lambda_{\zeta} \alpha_Y(0)} \right)}} \left( {e^{{\lambda_{\xi} \alpha_X\left( {x - y} \right)}} - 1} \right) \left( {e^{{\lambda_{\zeta} \alpha_{Y} \left( {x - y} \right)}} - 1} \right) \right) dx\;dy. $$

1.2 Proof

Let \( 1_{\mathcal {X}} \left( x \right) = \left\{ {\begin{array}{*{20}c} 1 & {x \in \cup_{i} \xi_{i} + X_{i} } \\ 0 & {\text{otherwise}} \\ \end{array} ,1_{\mathcal {Y}}\left( x \right)\left\{ {\begin{array}{*{20}c} 1 & {x \in \cup_{i} \zeta_{i} + Y_{i} } \\ 0 & {\text{otherwise}} \\ \end{array} } \right.} \right. \), then from Hall (1988) Equation (3.4) we have

$${\text{E}}\left\| A \right\| ={\text{E}}\int\limits_{\Omega}{1_{\mathcal{X}}\left(x \right)1_{\mathcal{Y}}\left(x \right)dx\;\; =\;\;\int\limits_{\Omega} {{\text{E1}_{{\mathcal{X}}}}\left(x\right){\text{E1}_{{\mathcal{Y}}}}\left(x \right)}} dx \hfill =\int\limits_{\Omega}{{\text{P}}\left({x\;{\text{covered}}\;{\text{by}}\;{\mathcal{X}}}\right){\text{P}}\left({x\;{\text{covered}}\;{\text{by}}\;{\mathcal{Y}}}\right)\;\; = \;\;\int\limits_{\Omega} {\left({1 - e^{{-\lambda_{\xi} {\text{E}}\left\| {X} \right\|}}} \right)\left({1 - e^{{- \lambda_{\zeta} {\text{E}}\left\| {Y}\right\|}}} \right)}} = \left\| \Omega \right\|\left({1 -e^{{- \lambda_{\xi} {\text{E}}\left\| {X} \right\|}}}\right)\left({1 - e^{{- \lambda_{\zeta} {\text{E}}\left\| {Y}\right\|}}} \right). $$

Note that the result still holds when \( {\text{E}}\left\| X \right\| = \infty \) or \( {\text{E}}\left\| Y \right\| = \infty \).

For the variance we note first that

$$ {\text{E}}\left\| A \right\|^{2} \;\; = \;\;{\text{E}}\int\limits_{\Omega} {1_{\mathcal{X}} \left(x \right)1_{\mathcal{Y}} \left(x \right)dx\int\limits_{\Omega} {1_{\mathcal{X}} \left(y \right)1_{\mathcal{Y}} \left(y \right)dy\;\; = \;\;\int\limits_{\Omega} {\int\limits_{\Omega} {{\text{E1}}_{\mathcal{X}} \left(x \right)1_{\mathcal{X}} \left(y \right){\text{E}}1_{\mathcal{Y}} \left(x \right)1_{\mathcal{Y}} \left(y \right)dx\;dy}}}} $$

From Hall (1988) Equation (3.6) and preceding calculations

$$ {\text{E1}}_{\mathcal{X}} \left(x \right)1_{\mathcal{X}} \left(y \right) ={\text{P}}\left({x\;{\text{and}}\;y\;{\text{covered}}\;{\text{by}}\;{\mathcal{X}}} \right) = 1 - {\text{P}}\left({x\;{\text{not}}\;{\text{covered}}\;{\text{by}}\;\mathcal{X}} \right) - {\text{P}}\left({y\;{\text{not}}\;{\text{covered}}\;{\text{by}}\;\mathcal{X}} \right) + {\text{P}}\left({{\text{neither}}\;x\;{\text{nor}}\;y\;{\text{covered}}\;{\text{by}}\;\mathcal{X}} \right) \hfill = \;1 - 2e^{-\lambda_{\xi} \alpha_X\left(0 \right)} + e^{{- 2\lambda_{\xi} \alpha_X\left({0} \right) + \lambda_{\xi} \alpha_X\left({x - y} \right)}} $$

Thus

$${\rm{Var}}\left\| A \right\| = E{\left\| A \right\|^2} -{(E\left\| A \right\|)^2} = {\int\limits_{\Omega}} {\int\limits_{\Omega}} \left( {{\left( {1 - 2{e^{ - {\lambda _{\xi} }{\alpha _X}(0)}} + {e^{- 2{\lambda _{\xi} }{\alpha _X}(0) + {\lambda _{\xi} }{\alpha _X}(x- y)}}} \right)}}\times{\left( {1 - 2{e^{ - {\lambda _{\zeta}}{\alpha _Y}(0)}} + e^{ - 2\lambda_{\zeta} \alpha_{Y}(0) + \lambda_{\zeta} \alpha _Y\left( {x - y} \right)}} \right)} - \left( {1 - e^{ - \lambda _{\xi}\alpha_{X}(0)}}\right)^{2} \left( {1- e^{ - \lambda_{\zeta} \alpha_{Y}(0)}} \right)^{2} \right) dx\;dy = {\int\limits_{\Omega}} {\int\limits_{\Omega}} \left( {\left( {1 - e^{ - \lambda_{\xi} \alpha _{X}(0)}} \right)^{2} e^{- 2\lambda_{\zeta}\alpha _{Y}(0)} {\left( {e^{{\lambda_{\zeta}\alpha _{Y}\left( {x - y} \right)}} - 1} \right)} + {\left( {1 - e^{ - \lambda_{\zeta}\alpha_{Y}(0)}} \right)^{2}} e^{ - 2\lambda_{\xi}\alpha_{X}(0)} {\left( {e^{{\lambda _{\xi}\alpha_{X}\left( {x - y} \right)}} - 1} \right)} + e^{{ - 2\left( {\lambda_{\xi} \alpha _X(0) + \lambda_{\zeta} \alpha _Y(0)} \right)}} {\left( {e^{{\lambda_{\xi} \alpha _X\left( {x - y} \right)}} - 1} \right)} \left( {e^{\lambda_{\zeta} \alpha_Y \left( {x - y} \right)} - 1} \right)} \right) dx\;dy.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, O.D., Nyman, P. & Sheridan, G.J. Modelling the effects of fire and rainfall regimes on extreme erosion events in forested landscapes. Stoch Environ Res Risk Assess 28, 2015–2025 (2014). https://doi.org/10.1007/s00477-014-0891-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0891-6

Keywords

Navigation