Skip to main content
Log in

Complexity–entropy analysis of daily stream flow time series in the continental United States

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Complexity–entropy causality plane (CECP) is a diagnostic diagram plotting normalized Shannon entropy \({\cal H}_S\) versus Jensen–Shannon complexity \({\cal C}_{JS}\) that has been introduced in nonlinear dynamics analysis to classify signals according to their degrees of randomness and complexity. In this study, we explore the applicability of CECP in hydrological studies by analyzing 80 daily stream flow time series recorded in the continental United States during a period of 75 years, surrogate sequences simulated by autoregressive models (with independent or long-range memory innovations), Theiler amplitude adjusted Fourier transform and Theiler phase randomization, and a set of signals drawn from nonlinear dynamic systems. The effect of seasonality, and the relationships between the CECP quantifiers and several physical and statistical properties of the observed time series are also studied. The results point out that: (1) the CECP can discriminate chaotic and stochastic signals in presence of moderate observational noise; (2) the signal classification depends on the sampling frequency and aggregation time scales; (3) both chaotic and stochastic systems can be compatible with the daily stream flow dynamics, when the focus is on the information content, thus setting these results in the context of the debate on observational equivalence; (4) the empirical relationships between \({\mathcal H}_S\) and \({\mathcal C}_{JS}\) and Hurst parameter H, base flow index, basin drainage area and stream flow quantiles highlight that the CECP quantifiers can be considered as proxies of the long-term low-frequency groundwater processes rather than proxies of the short-term high-frequency surface processes; (6) the joint application of linear and nonlinear diagnostics allows for a more comprehensive characterization of the stream flow time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(7):174102

    Google Scholar 

  • Bandt C, Shiha F (2007) Order patterns in time series. J Time Ser Anal 28(5):646–665

    Article  Google Scholar 

  • Beran J (1989) A test of location for data with slowly decaying serial correlations. Biometrika 76(2):261–269

    Article  Google Scholar 

  • Beran J (1994) Statistics for long-memory processes. Chapman & Hall, London

    Google Scholar 

  • Bian C, Qin C, Ma QDY, Shen Q (2012) Modified permutation–entropy analysis of heartbeat dynamics. Phys Rev E 85:021906

    Google Scholar 

  • Bonneville Power Administration, US Bureau of Reclamation, US Army Corps of Engineers (2001) The Columbia River System: inside story, 2nd edn. Bonneville Power Administration, Portland, Oregon. http://www.bpa.gov/corporate/Power_of_Learning/docs/columbia_river_inside_story.pdf

  • Cánovas JS, Guillamón A, delCarmen Ruíz M (2011) Using permutations to detect dependence between time series. Phys D 240(14–15):1199–1204

    Article  Google Scholar 

  • Carpi LC, Saco PM, Rosso OA (2010) Missing ordinal patterns in correlated noises. Phys A 389(10):2020–2029

    Article  CAS  Google Scholar 

  • Castellarin A, Burn DH, Brath A (2001) Assessing the effectiveness of hydrological similarity measures for flood frequency analysis. J Hydrol 241(3–4):270–285

    Article  Google Scholar 

  • Chaitin GJ (1966) On the length of programs for computing finite binary sequences. J Assoc Comput Mach 13(4):547–569

    Article  Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally-weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(403):596–610

    Article  Google Scholar 

  • Constantine W, Percival D (2007) Fractal: insightful fractal time series modeling and analysis. R package version 1.0-2

  • Crutchfield JP, Young K (1989) Inferring statistical complexity. Phys Rev Lett 63(2):105–108

    Article  Google Scholar 

  • De Micco L, Larrondo HA, Plastino A, Rosso OA (2009) Quantifiers for randomness of chaotic pseudo-random number generators. Philos Trans R Soc A 367(1901):3281–3296

    Article  CAS  Google Scholar 

  • De Micco L, Fernández JG, Larrondo HA, Plastino A, Rosso OA (2010) Sampling period, statistical complexity, and chaotic attractors. Phys A 391(8):2564–2575

    Article  Google Scholar 

  • Di Narzo AF (2007) TseriesChaos: analysis of nonlinear time series. R package version 0.1-8

  • Di Narzo AF, Aznarte JL (2007) tsDyn: time series analysis based on dynamical systems theory. R package version 0.6

  • Dooge JCI (1968) The hydrologic system as a closed system. Bull Int Assoc Sci Hydrol 13(1):58–68

    Article  Google Scholar 

  • Escalona-Morán M, Cosenza MG, López-Ruiz R, García P (2010) Statistical complexity and nontrivial collective behavior in electroencephalografic signals. Int J Bifurcat Chaos 20(6):1723–1729

    Article  Google Scholar 

  • Gong L, Constantine W, Chen YA (2009) msProcess: protein mass spectra processing. http://www.insightful.com/services/research/proteome/default.asp . R package version 1.0.5

  • Grassberger P (1986) Toward a quantitative theory of self-generated complexity. Int J Theor Phys 25(9):907–938

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50(5):346–349

    Article  Google Scholar 

  • Grayson RB, Blöschl G (2000) Spatial patterns in catchment hydrology: observations and modeling. Cambridge University Press, Cambridge

    Google Scholar 

  • Grosse I, Bernaola-Galván P, Carpena P, Román-Roldán R, Oliver J, Stanley HE (2002) Analysis of symbolic sequences using the Jensen–Shannon divergence. Phys Rev E 65(4):041905

    Google Scholar 

  • Hauhs M, Lange H (2008) Classification of runoff in headwater catchments: a physical problem. Geogr Compass 2(1):235–254

    Article  Google Scholar 

  • Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Phys D 31(2):277–283

    Article  Google Scholar 

  • Hirpa FA, Gebremichael M, Over TM (2010) River flow fluctuation analysis: effect of watershed area. Water Resour Res 46(12):W12529

    Google Scholar 

  • Hu K, Ivanov PC, Chen Z, Carpena P, Stanley HE (2001) Effect of trends on detrended fluctuation analysis. Phys Rev E 64(1):011114

    Google Scholar 

  • Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Phys A 316(1–4):87–114

    Article  Google Scholar 

  • Kantelhardt JW, Rybski D, Zschiegner SA, Braun P, Koscielny-Bunde E, Livina V, Havlin S, Bunde A (2003) Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods. Phys A 330(1–2):240–245

    Article  Google Scholar 

  • Kantelhardt JW, Koscielny-Bunde E, Rybski D, Braun P, Bunde A, Havlin S (2006) Long-term persistence and multifractality of precipitation and river runoff records. J Geophys Res 111(D1):D01106

    Google Scholar 

  • Király A, Jánosi IM (1998) Stochastic modeling of daily temperature fluctuations. Phys Rev E 65(5):051102

    Google Scholar 

  • Kolmogorov AN (1965) Three approaches to the quantitative definition of information. Probl Inf Transm 1:1–7

    Google Scholar 

  • Koscielny-Bunde E, Kantelhardt JW, Braun P, Bunde A, Havlin S (2006) Long-term persistence and multifractality of river runoff records: detrended fluctuation studies. J Hydrol 322(1–4):120–137

    Article  Google Scholar 

  • Koutsoyiannis D (2010) HESS Opinions “A random walk on water”. Hydrol Earth Syst Sci 14(3):585–601

    Article  Google Scholar 

  • Koutsoyiannis D (2011a) Hurst–Kolmogorov dynamics and uncertainty. J Am Water Resour Assoc 47(3):481–495

    Article  Google Scholar 

  • Koutsoyiannis D (2011b) Hurst–Kolmogorov dynamics as a result of extremal entropy production. Phys A 390(8):1424–1432

    Article  CAS  Google Scholar 

  • Kowalski A, Martín MT, Plastino A, Rosso OA (2007) Bandt–Pompe approach to the classical-quantum transition. Phys D 233(1):21–31

    Article  Google Scholar 

  • Krasovskaia I (1995) Quantification of the stability of river flow regimes. Hydrol Sci J 40(5):587–598

    Article  Google Scholar 

  • Krasovskaia I (1997) Entropy-based grouping of river flow regimes. J Hydrol 202(1–4):173–191

    Article  Google Scholar 

  • Lamberti PW, Martín MT, Plastino A, Rosso OA (2004) Intensive entropic non-triviality measure. Phys A 334(1–2):119–131

    Article  Google Scholar 

  • Lange H, Rosso OA, Hauhs M (2013) Ordinal pattern and statistical complexity analysis of daily stream flow time series. Eur Phys J Spec Top 222(2):535–552

    Article  Google Scholar 

  • Lempel A, Ziv J (1976) On the complexity of finite sequences. IEEE Trans Inf Theory 22(1):75–81

    Article  Google Scholar 

  • Livina V, Ashkenazy Y, Kizner Z, Strygin V, Bunde A, Havlin S (2003) A stochastic model of river discharge fluctuations. Phys A 330(1–2):283–290

    Article  Google Scholar 

  • López-Ruiz R, Mancini HL, Calbet X (1995) A statistical measure of complexity. Phys Lett A 209(5–6):321–326

    Article  Google Scholar 

  • López-Ruiz R, Sañudo J, Romera E, Calbet X (2011) Statistical complexity and Fisher–Shannon information: applications. In: Sen KD (ed) Statistical complexity. Springer, Netherlands, pp 65–127

  • Ludescher J, Bogachev MI, Kantelhardt JW, Schumann AY, Bunde A (2011) On spurious and corrupted multifractality: the effects of additive noise, short-term memory and periodic trends. Phys A 390(13):2480–2490

    Article  Google Scholar 

  • Marković D, Koch M (2005) Sensitivity of Hurst parameter estimation to periodic signals in time series and filtering approaches. Geophys Res Lett 32(17):L17401

    Google Scholar 

  • Martín MT, Plastino A, Rosso OA (2003) Statistical complexity and disequilibrium. Phys Lett A 311(2–3):126–132

    Article  Google Scholar 

  • Martín MT, Plastino A, Rosso OA (2006) Generalized statistical complexity measures: geometrical and analytical properties. Phys A 369(2):439–462

    Article  Google Scholar 

  • McDonnell JJ, Woods RA (2004) On the need for catchment classification. J Hydrol 299(1–2):2–3

    Article  Google Scholar 

  • Montanari A (2005) Deseasonalisation of hydrological time series through the normal quantile transform. J Hydrol 313(3–4):274–282

    Article  Google Scholar 

  • Montanari A, Rosso R, Taqqu MS (1997) Fractionally differenced ARIMA models applied to hydrologic time series: identification, estimation, and simulation. Water Resour Res 33(5):1035–1044

    Article  Google Scholar 

  • Montanari A, Rosso R, Taqqu MS (2000) A seasonal fractional ARIMA model applied to the Nile River monthly flows at Aswan. Water Resour Res 36(5):1249–1259

    Article  Google Scholar 

  • Movahed MS, Hermanis E (2008) Fractal analysis of river flow fluctuations. Phys A 387(4):915–932

    Article  Google Scholar 

  • Mudelsee M (2007) Long memory of rivers from spatial aggregation. Water Resour Res 43(1):W01202

    Article  Google Scholar 

  • Pachepsky Y, Guber A, Jacques D, Simunek J, Genuchten MTV, Nicholson T, Cady R (2006) Information content and complexity of simulated soil water fluxes. Geoderma 134(3–4):253–266

    Article  Google Scholar 

  • Pan F, Pachepsky YA, Guber AK, Hill RL (2011) Information and complexity measures applied to observed and simulated soil moisture time series. Hydrol Sci J 56(6):1027–1039

    Article  Google Scholar 

  • Pan F, Pachepsky YA, Guber AK, McPherson BJ, Hill RL (2012) Scale effects on information theory-based measures applied to streamflow patterns in two rural watersheds. J Hydrol 414–415:99–107

    Google Scholar 

  • Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49(2):1685–1689

    Article  CAS  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org, ISBN 3-900051-07-0

  • Rego CRC, Frota HO, Gusmão MS (2013) Multifractality of Brazilian rivers. J Hydrol 495:208–215

    Article  Google Scholar 

  • Regonda SK, Sivakumar B, Jain A (2004) Temporal scaling in river flow: can it be chaotic. Hydrol Sci J 49(3):373–385

    Google Scholar 

  • Rosso OA, Masoller C (2009a) Detecting and quantifying stochastic and coherence resonances via information-theory complexity measurements. Phys Rev E 79(4):040106(R)

    Google Scholar 

  • Rosso OA, Masoller C (2009b) Detecting and quantifying temporal correlations in stochastic resonance via information theory measures. Eur Phys J B 69(1):37–43

    Article  CAS  Google Scholar 

  • Rosso OA, Larrondo HA, Martín MT, Plastino A, Fuentes MA (2007a) Distinguishing noise from chaos. Phys Rev Lett 99(15):154102

    Google Scholar 

  • Rosso OA, Zunino L, Pérez DG, Figliola A, Larrondo HA, Garavaglia M, Martín MT, Plastino A (2007b) Extracting features of Gaussian self-similar stochastic processes via the Bandt–Pompe approach. Phys Rev E 76(6):061114

    Google Scholar 

  • Rosso OA, Carpi LC, Saco PM, Ravetti MG, Larrondo HA, Plastino A (2012a) The Amigó paradigm of forbidden/missing patterns: a detailed analysis. Eur Phys J B 85(12):419

    Article  CAS  Google Scholar 

  • Rosso OA, Carpi LC, Saco PM, Ravetti MG, Plastino A, Larrondo HA (2012b) Causality and the entropy–complexity plane: robustness and missing ordinal patterns. Phys A 391(1–2):42–55

    Article  Google Scholar 

  • Rosso OA, Olivares F, Zunino L, Micco L, Aquino ALL, Plastino A, Larrondo HA (2013) Characterization of chaotic maps using the permutation Bandt–Pompe probability distribution. Eur Phys J B 86(4):116

    Article  Google Scholar 

  • Salas JD, Kim HS, Eykholt R, Burlando P, Green TR (2005) Aggregation and sampling in deterministic chaos: implications for chaos identification in hydrological processes. Nonlinear Process Geophys 12(4):557–567

    Article  Google Scholar 

  • Sánchez JR, López-Ruiz R (2005) A method to discern complexity in two-dimensional patterns generated by coupled map lattices. Phys A 355(2–4):633–640

    Article  Google Scholar 

  • Serinaldi F (2010) Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series. Phys A 389(14):2770–2781

    Article  Google Scholar 

  • Sivakumar B (2004) Dominant processes concept in hydrology: moving forward. Hydrol Process 18(12):2349–2353

    Article  Google Scholar 

  • Sivakumar B (2008) Dominant processes concept, model simplification and classification framework in catchment hydrology. Stoch Environ Res Risk Assess 22(6):737–748

    Article  Google Scholar 

  • Sivakumar B (2009) Nonlinear dynamics and chaos in hydrologic systems: latest developments and a look forward. Stoch Environ Res Risk Assess 23(7):1027–1036

    Article  Google Scholar 

  • Sivakumar B, Singh VP (2012) Hydrologic system complexity and nonlinear dynamic concepts for a catchment classification framework. Hydrol Earth Syst Sci 16(11):4119–4131

    Article  Google Scholar 

  • Sivakumar B, Jayawardena AW, Li WK (2007) Hydrologic complexity and classification: a simple data reconstruction approach. Hydrol Process 21(20):2713–2728

    Article  Google Scholar 

  • Smakhtin VY (2001) Low flow hydrology: a review. J Hydrol 240(3–4):147–186

    Article  Google Scholar 

  • Soriano MC, Zunino L, Larger L, Fischer I, Mirasso CR (2011a) Distinguishing fingerprints of hyperchaotic and stochastic dynamics in optical chaos from a delayed opto-electronic oscillator. Opt Lett 36(12):2212–2214

    Article  Google Scholar 

  • Soriano MC, Zunino L, Rosso OA, Fischer I, Mirasso CR (2011b) Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis. IEEE J Quantum Electron 47(2):252–261

    Article  CAS  Google Scholar 

  • Staniek M, Lehnertz K (2007) Parameter selection for permutation entropy measurements. Int J Bifurcat Chaos 17(10):3729–3733

    Article  Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Phys D 58(1–4):77–94

    Article  Google Scholar 

  • Tiana-Alsina J, Torrent MC, Rosso OA, Masoller C, García-Ojalvo J (2010) Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback. Phys Rev A 82(1):013,819

    Google Scholar 

  • Tyralis H, Koutsoyiannis D (2011) Simultaneous estimation of the parameters of the Hurst–Kolmogorov stochastic process. Stoch Environ Res Risk Assess 25(1):21–33

    Article  Google Scholar 

  • Wackerbauer R, Witt A, Atmanspacher H, Kurths J, Scheingraber H (1994) A comparative classification of complexity measures. Chaos Solitons Fractals 4(1):133–173

    Article  Google Scholar 

  • Wang W, Van Gelder PHAJM, Vrijling JK, Chen X (2007) Detecting long-memory: Monte carlo simulations and application to daily streamflow processes. Hydrol Earth Syst Sci 11(2):851–862

    Article  Google Scholar 

  • Werndl C (2009) Are deterministic descriptions and indeterministic descriptions observationally equivalent. Stud Hist Philos Sci B 40(3):232–242

    Google Scholar 

  • Werndl C (2012) Evidence for the deterministic or the indeterministic description? A critique of the literature about classical dynamical systems. J Gen Philos Sci 43(2):295–312

    Article  Google Scholar 

  • Wuertz D et al (2008) fArma: ARMA time series modelling. http://www.rmetrics.org, R package version 270.74

  • Zanin M, Zunino L, Rosso OA, Papo D (2012) Permutation entropy and its main biomedical and econophysics applications: a review. Entropy 14(8):1553–1577

    Article  Google Scholar 

  • Zhang Q, Zhou Y, Singh VP, Chen YD (2011) Comparison of detrending methods for fluctuation analysis in hydrology. J Hydrol 400(1–2):121–132

    Article  Google Scholar 

  • Zunino L, Pérez DG, Martín MT, Garavaglia M, Plastino A, Rosso OA (2008) Permutation entropy of fractional Brownian motion and fractional Gaussian noise. Phys Lett A 372(27–28):4768–4774

    Article  CAS  Google Scholar 

  • Zunino L, Zanin M, Tabak BM, Pérez DG, Rosso OA (2009) Forbidden patterns, permutation entropy and stock market inefficiency. Phys A 388(14):2854–2864

    Article  Google Scholar 

  • Zunino L, Soriano MC, Fischer I, Rosso OA, Mirasso CR (2010a) Permutation information theory approach to unveil delay dynamics from time series analysis. Phys Rev E 82(4):046,212

    Google Scholar 

  • Zunino L, Zanin M, Tabak BM, Pérez DG, Rosso OA (2010b) Complexity–entropy causality plane: a useful approach to quantify the stock market inefficiency. Phys A 389(9):1891–1901

    Article  Google Scholar 

  • Zunino L, Tabak BM, Serinaldi F, Zanin M, Pérez DG, Rosso OA (2011) Commodity predictability analysis with a permutation information theory approach. Phys A 390(5):876–890

    Article  Google Scholar 

  • Zunino L, Fernández Bariviera A, Guercio MB, Martinez LB, Rosso OA (2012a) On the efficiency of sovereign bond markets. Phys A 391(18):4342–4349

    Article  Google Scholar 

  • Zunino L, Soriano M, Rosso O (2012b) Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. Phys Rev E Stat Nonlin Soft Matter Phys 86(4):046210

    Google Scholar 

Download references

Acknowledgments

Francesco Serinaldi acknowledges financial support from the Willis Research Network. Luciano Zunino and Osvaldo A. Rosso were supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Osvaldo A. Rosso gratefully acknowledges the support from FAPEAU fellowship, Brazil. The authors thank Dr. Bellie Sivakumar (University of New South Wales, Australia) for his useful remarks on an earlier version of this paper, and two anonymous reviewers for their comments and suggestions. The analyses were performed in R (R Development Core Team 2009) with the help of the contributed packages fractal (Constantine and Percival 2007), fArma (Wuertz et al. 2008), tseriesChaos (Di Narzo 2007), tsDyn (Di Narzo and Aznarte 2007) and msProcess (Gong et al. 2009). The authors and maintainers of this software are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Serinaldi.

Appendix

Appendix

The equations of the chaotic systems used in this study are listed as follows. The sets of parameters were chosen so that the systems describe chaotic attractors.

Duffing system:

$$ \left\{\begin{array}{l} \dot{x} = y \\ \dot{y} = - x^3 - cy + F \cos(z) \\ \dot{z} = \Upomega \\ \end{array}\right., $$
(6)

where c = 0.05, F = 7.5 and \(\Upomega = 1.\)

Lorenz system:

$$ \left\{\begin{array}{l} \dot{x} = a (y - x)\\ \dot{y} = x(b - z) - y\\ \dot{z} = xy + c z\\ \end{array}\right., $$
(7)

where a = 10, b = 28 and c = −8/3.

Rossler system:

$$ \left\{\begin{array}{l} \dot{x} = -(y + z)\\ \dot{y} = x + a y\\ \dot{z} = b + z (x - c)\\ \end{array}\right., $$
(8)

where a = 0.2, b = 0.2 and c = 5.7.

Henon map:

$$ \left\{\begin{array}{l} x_t = a - x_{t-1}^2 + b y_{t-1} \\ y_t = x_{t-1} \end{array}\right., $$
(9)

where a = 1.4 and b = 0.3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serinaldi, F., Zunino, L. & Rosso, O.A. Complexity–entropy analysis of daily stream flow time series in the continental United States. Stoch Environ Res Risk Assess 28, 1685–1708 (2014). https://doi.org/10.1007/s00477-013-0825-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0825-8

Keywords

Navigation