Skip to main content
Log in

Importance of habitat heterogeneity and biotic processes in the spatial distribution of a riparian herb (Carex remota L.): a point process approach

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This study attempts to understand the dependence on abiotic factors and on the biotic process of the population development. We used three spatial point process models (Poisson, Area-Interaction and shot-noise Cox processes) in both homogenous and inhomogeneous versions to model the distribution of three Carex remota cohorts in wet zones of a temperate forest in the north of Spain. The cohorts studied were adults and seedlings born in two consecutive years. With the use of these models we are able to simulate separately and jointly the effect on plant distribution of a homogeneous or heterogeneous habitat, and the absence or presence of some biotic processes, as seed dispersal and/or density-dependent interactions. The result of the bivariate function analysis does not reveal sufficient evidences, but suggests a weak positive relation between adults and seedlings that survived a dry period in the first summer. Models from the three cohorts show a decreasing degree of clustering from seedlings to adults. Besides, the results show that the importance of the main factors that explain the population structure changes along the development of Carex stages. Compared to seedlings, the adults pattern shows an increasing dependence on abiotic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Academia Kiado, Budapest, pp 267–281

    Google Scholar 

  • Baddeley A, Tuner R (2000) Practical maximum pseudolikelihood for spatial point patterns. Aust Nz J Stat 42:283–322

    Article  Google Scholar 

  • Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12:1–42

    Google Scholar 

  • Baddeley A, Turner R (2006) Modelling spatial point patterns in R. In: Baddeley A, Gregori P, Mateu J, Stoica R, Stoyan D (eds) Case studies in spatial point process modelling. Springer, Heidelberg, pp 23–74

    Chapter  Google Scholar 

  • Baddeley A, van Lieshout MNM (1995) Area-interaction point process. Ann I Stat Math 47:601–619

    Article  Google Scholar 

  • Baddeley A, Moller J, Waagepetersen R (2000) Non- and semiparametric estimation of interaction in inhomogeneous point patterns. Stat Neerl 54:329–350

    Article  Google Scholar 

  • Beers TW, Dress PE, Wensel LC (1966) Aspect transformation in site productivity research. J Forest 64:691–692

    Google Scholar 

  • Berman M, Turner TR (1992) Approximating point process likelihoods with GLIM. J Roy Stat Soc C-App 41:31–38

    Google Scholar 

  • Besag J (1977) Contribution to the discussion of Dr. Ripley paper. J Roy Stat Soc 39:193–195

    Google Scholar 

  • Brändel M, Schütz W (2005) Temperature effects on dormancy levels and germination in temperate forest sedges (Carex). Plant Ecol 176:245–261

    Article  Google Scholar 

  • Comas C, Mateu J (2011) Statistical inference for Gibbs point processes based on field observations. Stoch Env Res Risk Assess 25:287–300

    Article  Google Scholar 

  • Comas C, Palahi M, Pukkala T, Mateu J (2009) Characterising forest spatial structure through inhomogeneous second order characteristics. Stoch Env Res Risk Assess 23:387–397

    Article  Google Scholar 

  • Condit R, Asthon PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbel SP, Foster RB, Itoh A, LaFrankie JV, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T (2000) Spatial patterns in the distribution of tropical tree species. Science 288:1414–1418

    Article  CAS  Google Scholar 

  • Crawley MJ (1997) Life history and environment. In: Crawley MJ (ed) Plant ecology, 2nd edn. Blackwell Publishing Ltd, Oxford, pp 73–131

    Google Scholar 

  • De La Cruz M, Romao RL, Escudero A, Maestre FT (2008) Where do seedlings go? A spatio-temporal analysis of seedling mortality in a semi-arid gypsophyte. Ecography 31:720–730

    Article  Google Scholar 

  • Diggle PJ (2003) Statistical analysis of spatial point patterns, 2nd edn. Edward Arnold, London

    Google Scholar 

  • Fortin M-J, Dale M (2005) Spatial analysis. A guide for ecologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Fortin M-J, Dale M (2009) Spatial autocorrelation in ecological studies: a legacy of solutions and myths. Geogr Anal 41:392–397

    Article  Google Scholar 

  • Getzin S, Wiegand T, Wiegand K, He F (2008) Heterogeneity influences spatial patterns and demographics in forest stands. J Ecol 96:807–820

    Article  Google Scholar 

  • Gobierno de Navarra (1995) Mapa geológico 1:25.000, hoja 90-II. Available online http://www.navarra.es/appsext/tiendacartografia/. Accessed 23 June 2011

  • Gobierno de Navarra (2009) Departamento de Agricultura e Industria. Servicio de Meteorología y Clima de Navarra, 2009. http://meteo.navarra.es/. Accessed 23 June 2011

  • Goreaud F, Pélissier R (2003) Avoiding misinterpretation of biotic interactions with the intertype K12-function: population independence vs. random labeling hypotheses. J Veg Sci 14:681–692

    Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (2007) Comparative plant ecology. A functional approach to common British species, 2nd edn. Castlepoint Press, Dalbeattie

    Google Scholar 

  • Guan Y (2006) A composite likelihood approach in fitting spatial point process models. J Am Stat Assoc 101:1502–1512

    Article  CAS  Google Scholar 

  • Haase P, Pugnaire FI, Clark SC, Incoll LD (1996) Spatial patterns in a two-tiered semi-arid shrubland in southeastern Spain. J Veg Sci 7:527–534

    Article  Google Scholar 

  • Hagan JM, Pealer S, Whitman AA (2006) Do small headwater streams have a riparian zone defined by plant communities? Can J For Res 36:2131–2140

    Article  Google Scholar 

  • Hewitt JE, Thrush SF, Dayton PK, Bonsdorff E (2007) The effect of spatial and temporal heterogeneity on the design and analysis of empirical studies of scale-dependent systems. Am Nat 169:398–408

    Article  Google Scholar 

  • Huang F, Ogata Y (1999) Improvements of the maximum pseudo-likelihood estimators in various spatial statistical models. J Comput Graph Stat 8:510–530

    Google Scholar 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modeling of spatial point patterns. John Wiley & Sons, Chichester

    Google Scholar 

  • Jalilian A, Guan Y, Waagepetersen R (2011) Decomposition of variance for spatial Cox processes. Department of Mathematical Sciences, Aalborg University, Aalborg, p 18 (Research Report Series; R-2011-05)

  • John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbel SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci USA 104:864–869

    Article  CAS  Google Scholar 

  • Juan P, Mateu J, Saez M (2012) Pinpointing spatio-temporal interactions in wildfire patterns. Stoch Environ Res Risk Assess (in press)

  • Kovitz JL, Christakos G (2004) Spatial statistics of clustered data. Stoch Env Res Risk Assess 18:147–166

    Article  Google Scholar 

  • Lancaster J (2006) Using neutral landscapes to identify patterns of aggregation across resource points. Ecography 29:385–395

    Article  Google Scholar 

  • Luceño M (2008) Carex L. In: Castroviejo, S., Luceño M, Galán A, Jiménez Mejías, P, Cabezas F, Medina L. (eds.). Flora Iberica, Volumen XVIII. Real Jardín Botánico, CSIC. Madrid. pp 109–250

  • Moeur M (1997) Spatial models of competition and gaps dynamics in old-growth Tsuga heterophylla/Thuja plicata forest. For Eco Manage 94:175–186

    Article  Google Scholar 

  • Møller J, Syversveen AR, Waagepetersen RP (1998) Log Gaussian Cox processes. Scandinavian J Stat 25:451–482

    Article  Google Scholar 

  • North A, Ovaskainen O (2007) Interacctions between dispersal, competition, and landscape heterogeneity. Oikos 116:1106–1119

    Article  Google Scholar 

  • Perry GLW, Miller BP, Enright NJ (2006) A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecol 187:59–82

    Article  Google Scholar 

  • Plotkin JB, Chave J, Ashton P (2002) Cluster analysis of spatial patterns in Malaysian tree species. Am Nat 160:629–644

    Article  Google Scholar 

  • Quilchano C, Marañón T, Pérez-Ramos IM, Noejovich L, Valladares F, Zavala MA (2008) Patterns and ecological consequences of abiotic heterogeneity in managed cork oak forests of Southern Spain. Ecol Res 23:127–139

    Article  Google Scholar 

  • Ribbens E, Silander JA Jr, Pacala SW (1994) Seedlings recruitment in forests: calibrating models to predict patterns of tree seedlings dispersion. Ecology 75:1794–1806

    Article  Google Scholar 

  • Ripley BD (1981) Spatial Statistics. Wiley, New York

    Book  Google Scholar 

  • Schooley RL (2006) Spatial heterogeneity and characteristic scales of species-habitat relationship. Bioscience 56:533–537

    Article  Google Scholar 

  • Stoyan D, Penttinen A (2000) Recent applications of point process methods in forestry statistics. Stat Sci 15:61–78

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Turnbull LA, Coomes D, Hector A, Ress M (2004) Seed mass and competition/colonization trade-off: competitive interactions and spatial patterns in guild of annual plants. J Ecol 92:97–109

    Article  Google Scholar 

  • Valladares F, Guzmán B (2006) Canopy structure and spatial heterogeneity of understorey light in an abandoned Holm oak woodland. Ann For Sci 63:1–13

    Article  Google Scholar 

  • Waagepetersen RP (2007) An estimating function approach to inference for inhomogeneous Neyman–Scott processes. Biometrics 63:252–258

    Article  Google Scholar 

  • Wagner HH, Fortin M-J (2005) Spatial analysis of landscapes: concepts and statistics. Ecology 86:1975–1987

    Article  Google Scholar 

  • Wiegand T, Moloney KA (2004) Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104:209–229

    Article  Google Scholar 

  • Wiegand T, Gunatilleke S, Gunatilleke N (2007a) Species associations in a heterogeneous Sri Lankan dipterocarp forest. Am Nat 170:E77–E95

    Article  Google Scholar 

  • Wiegand T, Gunatilleke S, Gunatilleke N, Okuda T (2007b) Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology 88:3088–3102

    Article  Google Scholar 

  • Wu H-I, Sharpe PJH, Walker J, Penridge LK (1985) Ecological field theory: a spatial analysis of resource interference among plants. Ecol Model 29:215–243

    Article  Google Scholar 

  • Yu H, Wiegand T, Yang XH, Ci IJ (2009) The impact of fire ad density-dependent mortality in the spatial patterns of a pine forest in the Hulun Buir Sandland, Inner Mongolia, China. For Ecol Manage 257:2098–2107

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Departmento de Desarrollo Rural y Medio Ambiente del Gobierno de Navarra and the Parque Natural Señorío de Bertiz for allowing the research. The research was supported by funding projects from Fundación Caja Navarra and Fundación Universitaria de Navarra, and by a predoctoral grant from the Asociación de Amigos de la Universidad de Navarra to Jaime Uria-Diez. Work partially funded by grant MTM2010-14961 from the Spanish Ministry of Science and Education. We are also grateful to three anonymous referees than helped improving an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Uria-Diez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uria-Diez, J., Ibáñez, R. & Mateu, J. Importance of habitat heterogeneity and biotic processes in the spatial distribution of a riparian herb (Carex remota L.): a point process approach. Stoch Environ Res Risk Assess 27, 59–76 (2013). https://doi.org/10.1007/s00477-012-0569-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-012-0569-x

Keywords

Navigation