Skip to main content
Log in

Spatial interpolation schemes of daily precipitation for hydrologic modeling

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ajami NK, Gupta H, Wagener T, Sorooshian S (2004) Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. J Hydrol 298:112–135

    Article  Google Scholar 

  • Barancourt C, Creutin JD, Rivoirard J (1992) A method for delineating and estimating rainfall fields. Water Resour Res 28:1133–1144

    Article  Google Scholar 

  • Beek EG, Stein A, Janssen LLF (1992) Spatial variability and interpolation of daily precipitation amount. Stoch Hydrol Hydraul 6:209–221

    Article  Google Scholar 

  • Beven K, Freer J (2001) A dynamic TOPMODEL. Hydrol Process 15:1993–2011

    Article  Google Scholar 

  • Bishop GD, Church MR, Daly C (1998) Effects of improved precipitation estimates on automated runoff mapping: Eastern United States. J Am Water Resour As 34:159–166

    Article  Google Scholar 

  • Borga M, Vizzaccaro A (1997) On the interpolation of hydrologic variables; formal equivalance of multiquadratic surface fitting and kriging. J Hydrol 195:160–171

    Article  Google Scholar 

  • Borga M, Fattorelli S, Valentini P (1994) Precipitation estimation for flood forecasting in a mountainous basin. In: Tsakiris G, Santos MA, Balkema AA (eds) Advances in water resources technology and management; proceedings of the second European conference on advances in water resources technology and management. Lisbon, Portugal, 14–18 June 1994, pp 403–410

  • Bussieres N, Hogg W (1989) The objective analysis of daily rainfall by distance weighting schemes on a mesoscale grid. Atmos Ocean 27:521–541

    Article  Google Scholar 

  • Carpenter TM, Georgakakos KP (2004) Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulation of a distributed hydrologic model. J Hydrol 298:202–221

    Article  Google Scholar 

  • Carpenter TM, Georgakakos KP, Sperfslagea JA (2001) On the parametric and NEXRAD-radar sensitivities of a distributed hydrologic model suitable for operational use. J Hydrol 253:169–193

    Article  Google Scholar 

  • Carrera-Hernandez JJ, Gaskin SJ (2007) Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico. J Hydrol 336(3–4):231–249. doi:10.1016/j.jhydrol.2006.12.021

    Article  Google Scholar 

  • Chua SH, Bras R (1982) Optimal estimators of mean areal precipitation in regions of orographic influences. J Hydrol 57:23–48

    Article  Google Scholar 

  • Church MR, Bishop GD, Cassell DL (1995) Maps of regional evapotranspiration and runoff precipitation ratios in the northeast united-states. J Hydrol 168:283–298

    Article  Google Scholar 

  • Clark MP, Hay LE (2004) Use of medium-range numerical weather prediction model output to produce forecasts of streamflow. J Hydrometeorol 5:15–32

    Article  Google Scholar 

  • Clark M, Gangopadhyay S, Hay L, Rajagopalan B, Wilby R (2004) The Schaake shuffle: a method for reconstructing space-time variability in forecasted precipitation and temperature fields. J Hydrometeorol 5:243–262

    Article  Google Scholar 

  • Creutin JD, Obled C (1982) Objective analysis and mapping techniques for rainfall fields: an objective comparison. Water Resour Res 18:413–431

    Article  Google Scholar 

  • Daly C, Neilson RP, Phillips DL (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158

    Article  Google Scholar 

  • Dingman SL (1994) Physical hydrology, 1st ed. edn. Prentice Hall, New Jersey, p 575

    Google Scholar 

  • Dirks KN, Hay JE, Stow CE, Harris D (1998) High-resolution studies of rainfall on Norfolk Island Part II: interpolation of rainfall data. J Hydrol 208:187–193

    Article  Google Scholar 

  • Dodson R, Marks D (1997) Daily air temperature interpolated at high spatial resolution over a large mountainous region. Clim Res 8:1–20

    Article  Google Scholar 

  • Duan Q, Gupta VK, Sorooshian S (1993) A shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl 76:501–521

    Article  Google Scholar 

  • Erxleben J, Elder K, Davis R (2002) Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains. Hydrol Process 16:3627–3649

    Article  Google Scholar 

  • Fassnacht SR, Dressler KS, Bales RC (2003) Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data. Water Resour Res 39:1208. doi:10.1029/2002WR001512

    Article  Google Scholar 

  • Franke R, Nielson G (1980) Smooth interpolation of large sets of scattered data. Int J Numer Methods Eng 15:1691–1704

    Article  Google Scholar 

  • Gan TY, Burges SJ (2006) Assessment of soil-based and calibrated parameters of the Sacramento model and parameter transferability. J Hydrol 320:117–131

    Article  Google Scholar 

  • Goodale CL, Aber JD, Ollinger SV (1998) Mapping monthly precipitation, temperature, and solar radiation for Ireland with polynomial regression and a digital elevation model. Clim Res 10:35–49

    Article  Google Scholar 

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228:113–129

    Article  Google Scholar 

  • Groisman PV, Legates DR (1994) The accuracy of United-States precipitation data. Bull Am Meteorol Soc 75:215–227

    Article  Google Scholar 

  • Gupta VK, Waymire EC (1993) A statistical-analysis of mesoscale rainfall as a random cascade. J Appl Meteorol 32:251–267

    Article  Google Scholar 

  • Haberlandt U (2007) Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event. J Hydrol 332(1–2):144–157

    Article  Google Scholar 

  • Hartkamp AD, De Beurs K, Stein A, White JW (1999) Interpolation techniques for climate variables, NRG-GIS series 99-01. Mexico, D.F, CIMMYT

    Google Scholar 

  • Hay LE, McCabe GJ (2002) Spatial variability in water-balance model performance in the conterminous United States. J Am Water Resour As 38:847–860

    Article  Google Scholar 

  • Hay LE, Clark MP, Wilby RL, Gutowski WJ Jr, Leavesley GH, Pan Z, Arritt RW, Takle ES (2002) Use of regional climate model output for hydrologic simulations. J Hydrometeorol 3:571–590

    Article  Google Scholar 

  • Hay LE, Leavesley GH, Clark MP, Markstrom SL, Viger RJ, Umemoto M (2006) Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin. J Am Water Resour As 42:877–890

    Article  Google Scholar 

  • Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier, Amsterdam, p 552

    Google Scholar 

  • Henry AJ (1919) Increase of precipitation with altitude. Mon Weather Rev 47:33–41

    Article  Google Scholar 

  • Hevesi JA, Istok JD, Flint AL (1992) Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: structural analysis. J Appl Meteorol 31:661–676

    Article  Google Scholar 

  • Huber WC, Dickinson RE (1988) Storm water management model user’s manual, version 4, EPA/600/3-88/001a (NTIS PB88-236641/AS). Environmental Protection Agency, Athens, GA, p 595

    Google Scholar 

  • Jeffrey SJ, Carter JO, Moodie KB, Beswick AR (2001) Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ Model Softw 16:309–330

    Article  Google Scholar 

  • Jothityangkoon C, Sivapalan M, Viney NR (2000) Tests of a space-time model of daily rainfall in southwestern Australia based on nonhomogeneous random cascades. Water Resour Res 36:267–284

    Article  Google Scholar 

  • Kastelec D, Košmelj K (2002) Spatial interpolation of mean yearly precipitation using universal kriging. Develop Stat 17:149–162

    Google Scholar 

  • Kitanidis PK (1986) Parameter uncertainty in estimation of spatial functions: bayesian analysis. Water Resour Res 22:499–507

    Article  Google Scholar 

  • Kruizinga S, Yperlaan GJ (1978) Spatial interpolation of daily totals of rainfall. J Hydrol 36:65–73

    Article  Google Scholar 

  • Kurtzman D, Kadmon R (1999) Mapping of temperature variables in Israel: a comparison of different interpolation methods. Clim Res 13:33–43

    Article  Google Scholar 

  • Kurtzman D, Navon S, Morin E (2009) Improving interpolation of daily precipitation for hydrologic modelling: spatial pattern of preferred interpolators. Hydrol Process 23:3281–3291

    Article  Google Scholar 

  • Kyriakidis PG, Kim J, Miller NR (2001) Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics. J Appl Meteorol 40:1855–1877

    Article  Google Scholar 

  • Lanza LG, Ramirez JA, Todini E (2001) Stochastic rainfall interpolation and downscaling. Hydrol Earth Syst Sci 5:139–143

    Article  Google Scholar 

  • Leavesley GH, Lichty RW, Troutman BM, Saindon LG (1983) Precipitation-runoff modeling system: user’s manual. U.S. Geological Survey Water-Resources Investigations 83-4238, p 207

  • Leavesley GH, Restrepo PJ, Markstrom SL, Dixon M, Stannard LG (1996) The modular modeling system—MMS: user’s manual. Open file report 96-151, U.S. Geological Survey, p 182

  • Leavesley GH, Markstrom SL, Restrepo PJ, Viger RJ (2002) A modular approach to addressing model design, scale, and parameter estimation issues in distributed hydrological modeling. Hydrol Process 16:173–187

    Article  Google Scholar 

  • Li M, Shao Q (2010) An improved statistical approach to merge satellite rainfall estimates and raingauge data. J Hydrol 385:51–64. doi:10.1016/j.jhydrol.2010.01.023

    Article  Google Scholar 

  • Loader C (1997) LOCFIT: an introduction. Stat Comput Graph Newsl 8:11–17

  • Loader C (1999) Local regression and likelihood. Springer, New York, p 308

    Google Scholar 

  • Mackay NG, Chandler RE, Onof C, Wheater HS (2001) Disaggregation of spatial rainfall fields for hydrological modelling. Hydrol Earth Syst Sci 5:165–173

    Article  Google Scholar 

  • Marqunez J, Lastra J, Garcia P (2003) Estimation models for precipitation in mountainous regions: the use of GIS and multivariate analysis. J Hydrol 270:1–11

    Article  Google Scholar 

  • Moral FJ (2010) Comparison of different geostatistical approaches to map climate variables: application to precipitation. Int J Climatol 30:620–631. doi:/10.1002/joc.1913

    Google Scholar 

  • Myers DE (1994) Spatial interpolation: an overview. Geoderma 62:17–28

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modeling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841

    Article  Google Scholar 

  • Ollinger SV, Aber JD, Lovett GM, Millham SE, Lathrop RG, Ellis JM (1993) A spatial model of atmospheric deposition for the northeastern US. Ecol Appl 3:459–472

    Article  Google Scholar 

  • Owosina A (1992) Methods for assessing the space and time variability of ground water data. M.S. Thesis, Utah, Utah State University

  • Pardo-Iguzquiza E (1998) Comparison of geostatistical methods for estimating the areal average climatological rainfall mean using data on precipitation and topography. Int J Climatol 18:1031–1047

    Article  Google Scholar 

  • Prudhomme C, Reed DW (1999) Mapping extreme rainfall in a mountainous region using geostatistical techniques: a case study in Scotland. Int J Climatol 19:1337–1356

    Article  Google Scholar 

  • Rajagopalan B, Lall U (1998) Locally weighted polynomial estimation of spatial precipitation. J Geograph Inf Decis Anal 2:44–51

    Google Scholar 

  • Reek T, Doty SR, Owen TW (1992) A deterministic approach to the validation of historical daily temperature and precipitation data from the cooperative network. Bull Am Meteorol Soc 73:753–762

    Article  Google Scholar 

  • Refsgaard JC, Storm B (1995) MIKE SHE. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Colorado, pp 809–782

  • Salvetti A, Ruf W, Burlando P, Lehmann C, Juon U (2002) Hydrotope-based river flow simulation in a Swiss Alpine catchment accounting for topographic, micro-climatic and landuse controls. In: Rizzoli AE, Jakeman AJ (eds) Proceedings of the 1st biennial meeting of the Int Env Modell and Softw Soc (iEMSs). Lugano, Switzerland, 24–27, June 2002, vol 1, pp 340–345

  • Seo DJ (1996) Nonlinear estimation of spatial distribution of rainfall–An Indicator cokriging approach. Stoch Hydrol Hydraul 10:127–150

    Article  Google Scholar 

  • Sevruk B, Matokova-Sadlonova K, Toskano L (1998) Topography effects on small-scale precipitation variability in the Swiss pre-Alps, hydrology, water resources and ecology in headwaters. In: Proceedings of the HeadWater’98 conference, Meran/Merano, Italy, pp 51–58

  • Singh VP (1995) Computer models of watershed hydrology. Water Resources Publications, Colorado, p 1144

    Google Scholar 

  • Smith MB, Seo DJ, Koren VI, Reed SM, Zhang Z, Duan Q, Moreda F, Cong S (2004) The distributed model intercomparison project (DMIP): motivation and experiment design. J Hydrol 298:4–26

    Article  Google Scholar 

  • Sorooshian S, Duan QY, Gupta VK (1993) Calibration of rainfall-runoff models—application of global optimization to the sacramento soil-moisture accounting model. Water Resour Res 29:1185–1194

    Article  Google Scholar 

  • Sun H, Cornish PS, Daniell TM (2002) Spatial variability in hydrologic modeling using rainfall-runoff model and digital elevation model. J Hydrol Eng 7:404–412

    Article  Google Scholar 

  • Syed KH, Goodrich DC, Myers DE, Sorooshian S (2003) Spatial characteristics of thunderstorm rainfall fields and their relation to runoff. J Hydrol 271:1–21

    Article  Google Scholar 

  • Tabios GQ III, Salas JD (1985) A comparative analysis of techniques for spatial interpolation of precipitation. Water Resour Bull 21:356–379

    Google Scholar 

  • Thiessen AH (1911) Precipitation averages for large areas. A subsection in the climatology data for July 1911, District No. 10, Great Basin. Mon Weather Rev July:1082–1084

  • Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 190:214–251

    Article  Google Scholar 

  • Tobin C, Nicotina L, Parlange MB, Berne A, Rinaldo A (2011) Improved interpolation of meteorological forcings for hydrologic applications in a Swiss alpine region. J Hydrol 401:77–89. doi:/10.1016/J.Jhydrol.2011.02.010

    Article  Google Scholar 

  • Todini E, Pellegrini F, Mazzetti C (2001) Influence of parameter estimation uncertainty in Kriging. Part 2-test and case study applications. Hydrol Earth Syst Sci 5:225–232

    Article  Google Scholar 

  • Troutman BM (1985) Errors and parameter estimation in precipitation-runoff modeling: 2. Case study. Water Resour Res 21:1214–1222

    Article  Google Scholar 

  • USDA Soil Conservation Service (1986) Urban hydrology for small watersheds, technical release 55. NTIS PB87-101580, 2nd edn. Springfield, Virginia, p 164

    Google Scholar 

  • Walpole RE, Myers RH, Myers SL (1998) Probability and statistics for engineers and scientists, 6th ed. edn. Prentice Hall, New York, p 665

    Google Scholar 

  • Wilby RL, Hay LH, Leavesley GH (1999) A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River basin, Colorado. J Hydrol 225:67–91

    Article  Google Scholar 

  • Xie P, Yatagai A, Chen M, Hayasaka T, Fukushima Y, Liu C, Yang S (2007) A gauge-based analysis of daily precipitation over East Asia. J Hydrometeorol 8(3):607–626

    Article  Google Scholar 

  • Young KC (1992) A three-model for interpolating for monthly precipitation values. Mon Weather Rev 120:2561–2569

    Article  Google Scholar 

  • Zhang X, Srinivasan R (2009) GIS-based spatial precipitation estimation: a comparison of geostatistical approaches. J Am Water Resour As 45:894–906

    Article  Google Scholar 

Download references

Acknowledgments

Partial support of this work by NOAA GAPP program (Award NA16GP2806) and the NOAA RISA Program (Award NA17RJ1229) is thankfully acknowledged. The authors also wish to thank Lauren Hay and Steve Markstrom at USGS Denver office, and Subhrendu Gangopadhyay at Hydrosphere for providing valuable comments and data that greatly enhanced the quality of the entire analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeonsang Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, Y., Clark, M., Rajagopalan, B. et al. Spatial interpolation schemes of daily precipitation for hydrologic modeling. Stoch Environ Res Risk Assess 26, 295–320 (2012). https://doi.org/10.1007/s00477-011-0509-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-011-0509-1

Keywords

Navigation