Skip to main content
Log in

Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers?

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

There are tissues distributed throughout the plant that have a higher morphogenic capacity than others in the plant, and these could perhaps solve recalcitrance problems.

Abstract

For many conifer species, regeneration by organogenesis or somatic embryogenesis (SE) is still difficult and is often restricted to explants taken from juvenile donors. This review is based on the premise that there are tissues in the plant that are not normally used as explant, mostly because excising them in a viable state is difficult. Nevertheless, in cases where recalcitrance is a major problem, it may be worthwhile to pay closer attention to these tissues. Recalcitrance is a general problem, and discussion of it requires examples from the general literature. However, to restrict the scope of this review, preference will be given to conifer examples whenever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

LRM:

Lateral root meristem

OC:

Organizing center

Pluripotent:

Capable of forming one or more organs

SAM:

Shoot apical meristem

SE:

Somatic embryogenesis

SEs:

Somatic embryos

Totipotent:

Capable of forming an embryo from a somatic cell that is similar to a zygotic embryo

References

  • Aitken-Christie J, Singh AP, Horgan KJ, Thorpe AT (1985) Explant developmental state and shoot formation in Pinus radiata cotyledons. Bot Gaz 146:196–203

    Article  Google Scholar 

  • Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc’h A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57:626–644. doi:10.1111/j.1365-313X.2008.03715.x

    Article  CAS  PubMed  Google Scholar 

  • Ball E (1946) Development in sterile culture of stem tips and subjacent regions of Tropaeolum majus L. and of Lupinus albus L. Am J Bot 33:301–318

    Article  Google Scholar 

  • Ballester A, Corredoira E, Vieitez AM (2016) Limitations of somatic embryogenesis in hardwood trees. In: Park YS, Bonga JM, Moon H-K (eds) Vegetative propagation of forest trees. Korea Forest Research Institute, Seoul, pp 56–74. http://www.iufro20902.org/Publications

    Google Scholar 

  • Bernard-Dagan C, Carde JP, Gleizes M (1979) Etude des composés terpéniques au cours de la croisance des aiguilles du Pin maritime: comparaison de données biochimiques et ultrastructurales. Can J Bot 57:255–263

    Article  CAS  Google Scholar 

  • Birnbaum KD, Alvarado AS (2008) Slicing across kingdoms: regeneration in plants and animals. Cell 132:697–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonga JM (1977) Organogenesis in in vitro cultures of embryonic shoots of Abies balsamea (Balsam fir). In Vitro 13:41–53

    Article  CAS  PubMed  Google Scholar 

  • Bonga JM (1981) Organogenesis in vitro of tissues from mature conifers. In Vitro 17:511–518

    Article  Google Scholar 

  • Bonga JM (1984) Adventitious shoot formation in cultures of immature female strobili of Larix decidua. Physiol Plant 62:416–421

    Article  Google Scholar 

  • Bonga JM (1996) Frozen storage stimulates the formation of embryo-like structures and elongating shoots in explants from mature Larix decidua and L. × eurolepis trees. Plant Cell Tissue Organ Cult 46:91–101

    Article  Google Scholar 

  • Bonga JM (2004) The effect of various culture media on the formation of embryo-like structures derived from explants taken from mature Larix decidua. Plant Cell Tissue Organ Cult 77:43–48. http://www.iufro20902.org/Publications

    Article  Google Scholar 

  • Bonga JM (2012) Recalcitrance in the in vitro propagation of trees. In: Proceedings of the IUFRO Working Party 2.09.02 conference: Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management, 25–28 June 2012, Brno, pp 37–46. http://www.iufro20902.org/Publications

  • Bonga JM (2016) Conifer clonal propagation in tree improvement programs. In: Park YS, Bonga JM, Moon H-K (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NiFoS), Seoul, pp 3–31. http://www.iufro20902.org/Publications

  • Bonga JM, McInnis AH (1983) Origin and early development of roots in plantlets derived from embryo sections of Larix decidua in vitro. Can For Service Res Notes 3:12–14

    Google Scholar 

  • Bonga JM, von Aderkas P (1988) Attempts to micropropagate mature Larix decidua Mill. In: Ahuja MR (ed) Somatic cell genetics of woody plants. Kluwer, Dordrecht, pp 155–168

    Chapter  Google Scholar 

  • Bonnett HT Jr, Torrey JG (1966) Comparative anatomy of endogenous bud and lateral root formation in Convolvulus arvensis roots cultured in vitro. Am J Bot 53:496–507

    Article  Google Scholar 

  • Cardoso JC, Martinelli AP, Latado RR (2012) Somatic embryogenesis from ovaries of sweet orange cv. Tobias. Plant Cell Tissue Organ Cult 109:171–177

    Article  Google Scholar 

  • Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI (2005) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17:3350–3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corredoira E, San-José MC, Vieitez AM (2012) Induction of somatic embryogenesis from different explants of shoot cultures derived from young Quercus alba trees. Trees 26:881–891

    Article  Google Scholar 

  • Cutter EG (1972) Plant anatomy: experiment and interpretation. Part 2 Organs. William Clowes & Sons Ltd, London

    Google Scholar 

  • de Almeida M, de Almeida CV, Graner EM, Brondani GE, de Abreu-Tarazi MF (2012) Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study. Plant Cell Rep 31:1495–1515

    Article  CAS  PubMed  Google Scholar 

  • De Smet I (2011) Lateral root initiation: one step at a time. New Phytol 193:867–873

    Article  Google Scholar 

  • Dénarié J, Debellé F, Promé J-C (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    Article  PubMed  Google Scholar 

  • Diaz-Sala C, Hutchinson KW, Goldfarb B, Greenwood MS (1996) Maturation-related loss in rooting competence by loblolly pine stem cuttings: the role of auxin transport, metabolism and tissue sensitivity. Physiol Plant 97:481–490

    Article  CAS  Google Scholar 

  • Ehlers K, Kollmann R (2001) Primary and secondary plasmodesmata: structure, origin and functioning. Protoplasma 216:1–30

    Article  CAS  PubMed  Google Scholar 

  • Ehlers K, Binding H, Kollmann R (1999) The formation of symplasmic domains by plugging of plasmodesmata: a general event in morphogenesis? Protoplasma 209:181–192

    Article  Google Scholar 

  • Esau K (1965) Plant anatomy, 2nd edn. Wiley, New York

    Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  Google Scholar 

  • Flygh G, Grönroos R, Gulin L, von Arnold S (1993) Early and late root formation in epicotyl cuttings of Pinus sylvestris after auxin treatment. Tree Physiol 12:81–92

    Article  CAS  PubMed  Google Scholar 

  • Fowke L (2010) Creative young minds plus serendipity—a recipe for science. Botany 88:443–451

    Article  CAS  Google Scholar 

  • Gómez-Maldonado J, Crespillo R, Avila C, Cánovas M (2001) Efficient preparation of maritime pine (Pinus pinaster) protoplasts suitable for transgene expression analysis. Plant Mol Biol Rep 19:361–366

    Article  Google Scholar 

  • Guzzo F, Baldan B, Mariani P, Lo Schiavo F, Terzi M (1994) Studies on the origin of totipotent cells in explants of Daucus carota L. J Exp Bot 45:1427–1432

    Article  CAS  Google Scholar 

  • Hall RD, Riksen-Bruinsma T, Weyens G, Lefèbvre M, Dunwell JM, Krens FA (1996) Stomatal guard cells are totipotent. Plant Physiol 112:889–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall RD, Riksen-Bruinsma T, Weyens G, Lefèbvre M, Dunwell JM, van Tunen A, Krens FA (1997) Sugar beet guard cell protoplasts demonstrate a remarkable capacity for cell division enabling applications in stomatal physiology and molecular breeding. J Exp Bot 48:255–263

    Article  CAS  Google Scholar 

  • Halperin W (1978) Organogenesis at the shoot apex. Annu Rev Plant Physiol 29:239–262

    Article  Google Scholar 

  • Haywood V, Kragler F, Lacas WJ (2002) Plasmodesmata: pathways for protein and ribonucleoprotein signalling. Plant Cell 14:S303–S325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht V, Vielle-Calzada Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries S (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in the developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irish EE, McMurray D (2006) Rejuvenation by shoot apex culture recapitulates the developmental increase of methylation at the maize gene Pl-Blotched. Plant Mol Biol 60:747–758

    Article  CAS  PubMed  Google Scholar 

  • Kajala K, Ramakrishna P, Fisher A, Bergmann DC, De Smet I, Sozzani R, Weijers D, Brady SM (2014) Omics and modelling approaches for understanding regulation of asymmetric cell divisions in Arabidopsis and other angiosperm plants. Ann Bot 113:1083–1105

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim I, Zambryski PC (2005) Cell-to-cell communication via plasmodesmata during Arabidopsis embryogenesis. Curr Opin Plant Biol 8:593–599

    Article  CAS  PubMed  Google Scholar 

  • Klimaszewska K, Rutledge RG (2016) Is there potential for propagation of adult spruce trees through somatic embryogenesis? In: Park YS, Bonga JM, Moon H-K (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NiFoS), Seoul, pp 195–210. http://www.iufro20902.org/Publications

  • Kurczyńska EU, Gaj MD, Ujczak A, Mazur E (2007) Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh. Planta 226:619–628

    Article  PubMed  Google Scholar 

  • Larson PR (1975) Development and organization of the primary vascular system in Populus deltoides according to phyllotaxy. Am J Bot 62:1084–1099

    Article  Google Scholar 

  • Laux T (2003) The stem cell concept in plants: a matter of debate. Cell 113:281–283

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama E, Tanaka T, Hosoi Y, Ishii K, Morohoshi N (2000) Embryogenic cell culture, protoplast regeneration, cryopreservation, biolistic gene transfer and plant regeneration in Japanese cedar (Cryptomeria japonica D. Don). Plant Biotechnol 17:281–296

    Article  CAS  Google Scholar 

  • Merkle SA, Neu KA, Battle PJ, Baily RL (1998) Somatic embryogenesis and plantlet regeneration from immature and mature tissues of sweetgum (Liquidambar styraciflua). Plant Sci 132:169–178

    Article  CAS  Google Scholar 

  • Michaux-Ferrière N, Grout H, Carron MP (1992) Origin and ontogenesis of somatic embryos in Hevea brasiliensis (Euphorbiaceae). Am J Bot 79:174–180

    Article  Google Scholar 

  • Miyashima S, Sebastian J, Lee J-Y, Helariutta Y (2013) Stem cell function during plant vascular development. EMBO J 32:178–193. doi:10.1038/emboj.2012.301

    Article  CAS  PubMed  Google Scholar 

  • Monteuuis O (1991) Rejuvenation of a 100-year-old Sequoiadendron giganteum through in vitro meristem culture. I. Organogenic and morphological arguments. Physiol Plant 81:111–115

    Article  Google Scholar 

  • Monteuuis O, Doulbeau S, Verdeil J-L (2008) DNA methylation in different origin clonal offspring from a mature Sequoiadendron giganteum genotype. Trees 22:779–784

    Article  CAS  Google Scholar 

  • Monteuuis O, Lardet L, Montoro P, Berthouly M, Verdeil J-L (2011) Somatic embryogenesis and phase change in trees. In: Proceedings of the IUFRO Working Party 2.09.02 “Somatic embryogenesis of trees” conference on “Advances in somatic embryogenesis of trees and its application for the future forests and plantations”, 19–21 August, Suwon, pp 21–28

  • Nelson T, Tausta SL, Gandotra N, Liu T (2006) Laser microdissection of plant tissue: what you see is what you get. Annu Rev Plant Biol 57:181–201

    Article  CAS  PubMed  Google Scholar 

  • Parizot B, Laplaze L, Ricaud L, Boucheron-Dubuisson E, Bayle V, Bonke M, De Smet I, Poethig SR, Helariutta Y, Haseloff J, Chirqui D, Beeckman T, Nussaume L (2008) Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol 146:140–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petricka JJ, Van Norman JM (2009) Benfey PN (2009) Symmetry breaking in plants: molecular mechanisms regulating asymmetric cell division in Arabidopsis. Cold Spring Harbor Perspect Biol 1:a000497

    Article  Google Scholar 

  • Prehn D, Serrano C, Mercado A, Stange C, Barrales L, Arce-Johnson P (2003) Regeneration of whole plants from apical meristems of Pinus radiata. Plant Cell Tissue Organ Cult 73:91–94

    Article  CAS  Google Scholar 

  • Pulianmackal AJ, Kareem AVK, Durgaprasad K, Trivedi ZB, Prasad K (2014) Competence and regulatory interactions during regeneration in plants. Front Plant Sci 5:1–16. doi:10.3389/fpls.2014.00142

    Article  Google Scholar 

  • Rodrigues AP, Sérgio PM, Teixeira MR, Pais MS (2001) In vitro break of dormancy of axillary buds from woody species (Persea indica and Arbutus unedo) by sectioning with a laser beam. Plant Sci 161:173–178

    Article  CAS  Google Scholar 

  • Russell JA (1993) Advances in protoplast culture of woody plants. In: Ahuja MR (ed) Micropropagation of woody plants. Kluwer, Dordrecht, pp 67–91

    Chapter  Google Scholar 

  • Selby C, Harvey BMR (1985) The influence of natural and in vitro bud flushing on adventitious bud production in Sitka spruce [Picea sitchensis (Bong.) Carr.] bud and needle culture. New Phytol 100:549–562

    Article  Google Scholar 

  • Shabde M, Murashige T (1977) Hormonal requirements of excised Dianthus caryophyllus L. shoot apical meristem in vitro. Am J Bot 64:443–448

    Article  CAS  Google Scholar 

  • Smith S, De Smet I (2012) Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans R Soc B 367:1441–1452. doi:10.1098/rstb.2011.0234

    Article  CAS  Google Scholar 

  • Smith RH, Murashige T (1970) In vitro development of the isolated shoot apical meristem of angiosperms. Am J Bot 57:562–568

    Article  Google Scholar 

  • Soyars CL, James SR, Nimchuk ZL (2016) Ready, aim, shoot: stem cell regulation of the shoot apical meristem. Curr Opin Plant Biol 29:163–168

    Article  CAS  PubMed  Google Scholar 

  • Steeves TA, Sussex IM (1972) Patterns in plant development. Prentice Hall, New Jersey, p 302

    Google Scholar 

  • Steinmacher DA, Clement CR, Guerra MP (2007a) Somatic embryogenesis from immature peach palm inflorescence explants: towards development of an efficient protocol. Plant Cell Tissue Organ Cult 89:15–22

    Article  Google Scholar 

  • Steinmacher DA, Krohn NG, Dantas ACM, Stefenon VM, Clement CR, Guerra MP (2007b) Somatic embryogenesis in peach palm using thin cell layer technique: induction, morpho-histological aspects and AFPL analysis of somaclonal variation. Ann Bot 100:699–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward FC (1961) Vistas in plant physiology: problems of organization, growth, and morphogenesis. Can J Bot 39:441–460

    Article  Google Scholar 

  • Steward FC (1968) Growth and organization in plants. Addison-Wesley Publishing Company, Reading, p 564

    Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:653–704

    Article  Google Scholar 

  • Steward FC, Mapes MO, Kent AE, Holsten RD (1964) Growth and development of cultured plant cells. Science 143:20–27

    Article  CAS  PubMed  Google Scholar 

  • Stich M, Thalhammer S, Burgemeister R, Friedemann G, Ehnle S, Lüthy C, Schütze K (2003) Live cell catapulting and recultivation. Pathol Res Pract 199:405–409

    Article  PubMed  Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522

    Article  Google Scholar 

  • Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18:463–471. doi:10.1016/j.devcel.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  • Teixeira da Silva J, Dobránszki J (2013) Plant thin cell layers: a 40-year celebration. J Plant Growth Regul 32:922–943

    Article  CAS  Google Scholar 

  • Tomaz ML, Mendes BMJ, De Assis F, Filho M, Demétrio CGB, Jansakul N, Rodriguez APM (2001) Somatic embryogenesis in Citrus spp.: carbohydrate stimulation and histodifferentiation. In Vitro Cell Dev Biol Plant 37:446–452

    Article  CAS  Google Scholar 

  • Tran Than Van K, Bui VL (2000) Current status of thin cell layer method for the induction of organogenesis or somatic embryogenesis. In: Mohan Jain S, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 6. Kluwer, Dordrecht, pp 51–92

    Chapter  Google Scholar 

  • Tran Thanh Van K, Yilmaz-Lentz D, Trinh TH (1987) In vitro control of morphogenesis in conifers. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry, vol 2., Specific principles and methods: growth and developmentsMartinus Nijhoff Publishers, Dordrecht, pp 168–182

    Chapter  Google Scholar 

  • Trontin J-F, Aronen T, Hargreaves C, Montalbán IA, Moncaleán P, Reeves C, Quoniou S, Lelu-Walter M-A, Klimaszewska K (2016) International effort to induce somatic embryogenesis in adult pines. In: Park YS, Bonga JM, Moon H-K (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NIFoS), Seoul, pp 211–260. http://www.iufro20902.org/Publications

  • Tucker MR, Okada T, Hu Y, Scholefield A, Taylor JM, Koltunow AMG (2012) Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development 139:1399–1404

    Article  CAS  PubMed  Google Scholar 

  • Uchida N, Tasaka M (2013) Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases. J Exp Bot 64:5335–5343. doi:10.1093/jxb/ert196

    Article  CAS  PubMed  Google Scholar 

  • von Arnold S, Hawes C (1989) Differentiation of bud meristems and cataphylls during adventitious bud formation on embryos of Picea abies. Can J Bot 67:422–428

    Article  Google Scholar 

  • von Arnold S, Alsterborg E, Walles B (1988) Micromorphological studies of adventitious bud formation on Picea abies embryos treated with cytokinin. Physiol Plant 72:248–256

    Article  Google Scholar 

  • Wang KX, Karnosky DF, Timmis R (1991) Adventitious bud production from mature Picea abies: rejuvenation associated with female strobili formation. In: Ahuja MR (ed) Woody plant biotechnology. Plenum Press, New York, pp 83–90

    Chapter  Google Scholar 

  • Wu H, Hu Z-h (1997) Comparative anatomy of resin ducts of the Pinaceae. Trees 11:135–143

    Article  Google Scholar 

  • Yang JL, Seong ES, Kim MJ, Ghimire BK, Kang WH, Yu CY, Li CH (2010) Direct somatic embryogenesis from pericycle cells of broccoli (Brassica oleracea L. var. italica) root explants. Plant Cell Tiss Org Cult 100:49–58

    Article  Google Scholar 

Download references

Acknowledgements

I wish to thank Dr. Krystyna Klimaszewska and Dr. Patrick von Aderkas for their review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Bonga.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by M. Buckeridge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonga, J.M. Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers?. Trees 31, 781–789 (2017). https://doi.org/10.1007/s00468-016-1509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1509-z

Keywords

Navigation