Skip to main content
Log in

Genetic diversity of chestnut tree in relation to susceptibility to leaf miner (Cameraria ohridella Deschka & Dimič)

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Species of Aesculus genus are divided into five main sections according to their susceptibility and resistance to horse chestnut leaf miner using molecular markers.

Abstract

Some species of the genus Aesculus are yearly severely infested by horse chestnut leaf miner (Cameraria ohridella). The larvae mine the leaves and under appropriate conditions can damage up to 100% of the leaf area. In this study, we assessed the genetic diversity of eight species of horse chestnut and their genotypes which have varying susceptibility to the leaf miner. Analysis of eight microsatellite loci showed high polymorphic information content 0.45–0.77 (0.60 in average) and high genetic diversity. For each locus, we found on average 5.50 alleles. During three vegetation periods, the leaf area damage of these genotypes was evaluated using the statistical software Assess 2.0. Different pressure of leaf miner and different development at each locality was recorded, and in some cases less damage was found, in one case the lesser damage was permanent. From the data, a pathological scale was established and a dendogram of similarity was created. Based on SSR analysis, four groups of Aesculus trees were distinguished according to their resistance or susceptibility and five main section+Hybrid were found. By cloning and analysing the inner transcribed spacers, the ITS1 and ITS2, inner and inter species variability was examined. For the sequence of hybrid species A. × carnea, no compliance was revealed in NBCI database. For this reason, the first sequence of this genotype was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar FJ, Rosselló AJ, Feliner NG (1999) Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeraria (Plumbaginaceae). Mol Ecol 8(8):1341–1346

    Article  Google Scholar 

  • Blaalid R, Kumar S, Nilson HR, Abarenkov K, Kirks MP, Kauserud H (2013) ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol Ecol Res 13(2):218–224

    Article  CAS  Google Scholar 

  • Blattner FR, Kadereit JW (1999) Morphological evolution and ecological diversification of the forest-dwelling poppies (Papaveraceae: Chelidonioideae) as deduced from a molecular phylogeny of the ITS region. Plant Syst Evol 219(3–4):181–197

    Article  CAS  Google Scholar 

  • Bruns E (2016) Fitness costs of plant disease resistance. eLS. Wiley, Chichester, pp 1–11

    Chapter  Google Scholar 

  • Buerki S, Lowry PP II, Alvarez N, Razafimandimbison GS, Küpfer P, Callmander WM (2010) Phylogeny and circumscription of Sapindaceae revisited: molecular sequence data, morphology and biogeography support recognition of a new family, Xanthoceraceae. Plant Ecol Evolut 143(2):148–159

    Article  Google Scholar 

  • Chanon MA (2005) Studies on the reproductive capacity of Aesculus parviflora and Aesculus pavia: oportunities for their improvement through interspecific hybridization. Dissertation, The Ohio State University

  • D´Costa EL (2014) Resistance and susceptibiliy to the invasive leaf miner Cameraria ohridella within the genus Aesculus. Dissertation, Royal Holloway, University of London

  • Doyle K, Corporation Promega (1996) Promega protocols and applications guide. Promega Corporation, USA

    Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3(4):278–284

    Article  CAS  PubMed  Google Scholar 

  • Forest F, Drouin NJ, Charest R, Brouillet L, Bruneau A (2001) A morphological phylogenetic analysis of Aesculus L. and Billia Peyr. (Sapindaceae). Can J Bot 79(2):154–169

    Google Scholar 

  • Gálová Z, Vivodík M, Bálážová Ž, Hlozáková TM (2015) Identification and differentiation of Ricinus communis L. using SSR markers. Potravinárstvo 9(1):556–561

    Google Scholar 

  • Gilbert M, Grégoire JC (2003) Visual, semi-quantitative assessments allow accurate estimates of leafminer population densities: an example comparing image processing and visual evaluation of damage by the horse chestnut leafminer Cameraria ohridella (Lep., Gracillariidae). J Appl Entomol 127(6):354–359

    Article  Google Scholar 

  • Hampl V, Pavlíček A, Flegr J (2001) Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with a freeware program FreeTree: application to Trichomonad parasites. Int J Syst Evol Microbiol 51(3):731–735

    Article  CAS  PubMed  Google Scholar 

  • Hardin J (1957) A revision of the American Hippocastancea. Brittonia 9(3):145–171

    Article  Google Scholar 

  • Harris JA (2007) Molecular and morphological inference of the phylogeny, origin, and evolution of Aesculus L. (Sapindales). Dissertation, North Carolina State University

  • Harris JA, Xiang QY (2009) Estimating ancestral distributions of lineages with uncertain sister groups: a statistical approach to dispersal-vicariance analysis and a case using Aesculus L. (Sapindaceae) including fossils. J Syst Evolut 47(5):349–368

    Article  Google Scholar 

  • Harris AJ, Xiang QY, Thomas TD (2009) Phylogeny, origin, and biogeographic history of Aesculus L. (Sapindales)—an update from combined analysis of DNA sequences, morphology, and fossils. Taxon 58(1):1–19

    Google Scholar 

  • Heinrich M, Pieroni A, Bremner P (2005) Plants as Medicines. In: Prance G, Nesbitt M (eds) The cultural history of plants. Routledge, New York, pp 205–238

    Google Scholar 

  • Irzykowska L, Werner M, Bocianowski J, Karolewski Z, Frużyńska-Jóźwiak D (2013) Genetic variation of horse chestnut and red horse chestnut and trees susceptibility to Erysiphe flexuosa and Cameraria ohridella. Biologia 68(5):851–860

    Article  Google Scholar 

  • Isagi Y, Saito D, Kawaguchi H, Tateno R, Watanabe S (2007) Effective pollen dispersal is enhanced by the genetic structure of an Aesculus turbinata population. J Ecol 95(5):983–990

    Article  Google Scholar 

  • Kaneko Y, Takada T, Kawano S (1999) Population biology of Aesculus turbinata Blume: a demographic analysis using transition matrices on a natural population along a riparian environmental gradient. Plant Species Biol 14(1):47–68

    Article  Google Scholar 

  • Kenis M, Girardoz S, Avtzis N, Freise J, Heitland W, Grabenweger G, Lakatos F, Lopez-Vaamonde C, Svatos A, Tomov R (2003) Finding the area of origin of the horse-chestnut leaf miner: a Challenge. In: Proceedings: IUFRO Kanazawa 2003 “Forest Insect Population Dynamics and Host Influences”, pp 63–66

  • Lai Y, Fengzhu S (2003) The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol Biol Evolut 20(12):2123–2131

    Article  CAS  Google Scholar 

  • LeRiche K, Eagle CHS, Crease J (2014) Copy number of the transposon, Pokey, in rDNA is positively correlated with rDNA copy number in Daphnia obtusa. PlosOne 9(12):21

    Article  Google Scholar 

  • Mertelík J, Kloudová K (2012) Evaluation of field resistance of the horse chestnut cultivar Mertelík to Cameraria ohridella. Acta Pruhoniciana 102:5–8

    Google Scholar 

  • Mertelík J, Kloudová K, Vanc P (2004) Occurrence of Aesculus hippocastanum with high degree of resistance to Cameraria ohridella in the Czech republic. Acta Fytotechnica Et Zootechnica, Special Number, Proceedings of the XVI. Slovak an Czech Plant Protection Conference organised at Slovak Agricultural University in Nitra, Slovakia, Vol 7, 204

  • Mertelík J, Kloudová K, Stejskal J (2010) Utilization of horse chestnut clone M06 with resistant behaviour to horse chestnut leaf miner for seed production as a source of food in game preserves (in Czech). Acta Pruhoniciana 94(1):9–12

    Google Scholar 

  • Minami E, Isagi Y, Kaneko Y, Kawaguchi H (1998) Polymorphic microsatellite markers in Japanese horse chestnut Aesculus turbinata Blume. Mol Ecol 7(11):1613–1621

    Article  Google Scholar 

  • Mishra KK, Fougat RS, Ballani A, Vinita T, Yachana Y, Madhumati B (2014) Potential and application of molecular markers techniques for plant genome analysis. Int J Pure Appl Biosci 2(1):169–188

    Google Scholar 

  • Nejezchlebova M (2011) The study of the nature of resistance in the genus Aesculus to horse chestnut leafminer (Cameraria ohridella) (in Czech). Master Thesis, Mendel University in Brno, Lednice

  • Nováková P (2008) Bionomics of horse chestnut leaf miner (Cameraria ohridella) and their natural enemies from the order (Hymenoptera: Chalcidoidea); possibilities of defence (in Czech). Dissertation, Czech University of Life Sciences Prague

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12(4):357–358

    CAS  PubMed  Google Scholar 

  • Promega (2010) pGEM®-T and pGEM®-T easy vector systems. Technical manual. http://www.promega.com/~/media/files/resources/protocols/technical%20manuals/0/pgem-t%20and%20pgem-t%20easy%20vector%20systems%20protocol.pdf. Accessed 23 Aug 2015

  • Provan J, Soranzo N, Wilson JN, Goldstein BD, Powell W (1999) A low mutation rate for chloroplast microsatellites. Genetics 153(2):943–947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russel T (2005) Wood. In: Prance G, Nesbitt M (eds) The cultural history of plants. Routledge, New York, pp 315–333

    Google Scholar 

  • Samek T (2003) Diapause of Cameraria ohridella Deschka et Dimic and its impact on the species population dynamics. Journal of Forest Science 49(6):252–258

    Google Scholar 

  • Šefrová H (2007) New pests and changes of the insect species harmfulness in last decades. In: Bláha L (ed) Vliv abiotických a biotických stresorů na vlastnosti rostlin 2007 (in Czech). Conference proceedings from 21–22.3.2007. CULS Prague-Ruzyně, ČZU Prague, pp 31–37

  • Snieškienė V, Baležentienė L, Stankevičienė A (2011) State of horse-chestnut, Aesculus hippocastanum L., in Lithuania: diseases and pest damages. Ekologija 57(2):62–69

    Google Scholar 

  • Steele H, Laue BE, MacAskill GA, Hendry SJ, Green S (2010) Analysis of the natural infection of European horse chestnut (Aesculus hippocastanum) by Pseudomonas syringae pv. aesculi. Plant Pathol 59(6):1005–1013

    Article  Google Scholar 

  • Straw NA, Tilbury C (2006) Host plants of the horse-chestnut leaf-miner (Cameraria ohridella), and the rapid spread of the moth in the UK 2002–2005. Arboric J 29:83–99

    Article  Google Scholar 

  • Thomas TD, Ahedor RA, Williams FCh, dePamphilis C, Crawford JD, Xiang QY (2008) Genetic analysis of a broad hybrid zone in Aesculus (Sapindaceae): is there evidence of long-distance pollen dispersal? Int J Plant Sci 169(5):647–657

    Article  Google Scholar 

  • Tozlu E, Demirci E (2010) First report of powdery mildew of Aesculus hippocastanum caused by Erysiphe flexuosa in Turkey. Australas Plant Dis Notes 5(1):61–62

    Article  Google Scholar 

  • Vejsadová H, Šedivá J, Vlašínová H, Havel L, Mertelík J, Kloudouvá K (2009) Organogenesis induction in horse chestnut (Aesculus hippocastanum L.) (in Czech). Zprávy lesnického výzkumu 54(4):286–292

    Google Scholar 

  • Vyhnánek T, Nevrtalová E, Slezáková K (2009) Detection of the genetic variability of triticale using wheat and rye SSR markers. Cereal Res Commun 37(1):23–29

    Article  Google Scholar 

  • Vyhnánek T, Bačovský V, Vlašínová H, Havel L, Šedivá J, Mertelík J (2013) The study of genetic variability in the genus Aesculus L. by SSR markers (in Czech). Zprávy lesnického výzkumu 58(3):244–249

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Xiang QY, Crawford JD, Wolfe DA, Tang YCh, DePamphilis WC (1998) Origin and biogeography of Aesculus L. (Hippocastanaceae): a molecular phylogenetic perspective. Evolution 52(4):988–997

    Article  Google Scholar 

  • Zimmermannová-Pastirčáková K (2003) Occurrence of Horsechestnut leaf blotch and cultural characteristic of its causal agent-fungus Phyllosticta sphaeropsoidea, an anamorph of Guignardia aesculi. Folia Oecologica 30(2):245–250

    Google Scholar 

Download references

Acknowledgements

The study was funded by institutional support (VUKOZ-IP-00027073). We greatly thank Dr. Alexander Oulton for revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Bačovský.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by W. Osswald.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bačovský, V., Vyhnánek, T., Hanáček, P. et al. Genetic diversity of chestnut tree in relation to susceptibility to leaf miner (Cameraria ohridella Deschka & Dimič). Trees 31, 753–763 (2017). https://doi.org/10.1007/s00468-016-1506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1506-2

Keywords

Navigation