Skip to main content

Advertisement

Log in

Intra-annual stem growth dynamics of Lebanon Cedar along climatic gradients

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

An Erratum to this article was published on 12 May 2017

Abstract

Key message

Onset of cambial activity in Lebanon Cedar is triggered by stem temperature but may be delayed by high site-LAI. Higher growth rates and tree-ring widths were observed under better water and light availability. Daily stem radius variations were sensitive to humid conditions.

Abstract

Studies on intra-annual dynamics of stem growth provide useful information on tree growth responses to environmental conditions, but are fragmentary for species from Mediterranean Mountain ranges. Lebanon Cedar is a frost and drought tolerant species, growing between 1000 and 2000 m a.s.l in the Taurus Mountains (Turkey). Foresters see it as a potential candidate for plantation in Central European forests facing global warming. To describe the natural variability of Lebanon Cedar growth dynamics, five study sites were established: four along an altitudinal gradient at a natural site in SW-Turkey and one in a Lebanon Cedar plantation in Central Germany. Two stem growth monitoring methods were used: (1) bi-weekly microcoring during 2013 growing season and (2) point dendrometers during 2013 and 2014. Histological analyses were used to calibrate dendrometer records and to describe cambium phenology. Seasonal dynamics of xylem and stem radial increments were modelled by Gompertz functions. Onset of cambial activity was observed 1–2 weeks after stem temperatures reached a threshold of 5 °C but could be delayed by high site-LAI. Cedars growing under better light and water availability showed higher growth rates and wider tree rings. Daily stem radius variations (dSRV) extracted from dendrometer records were negatively related to vapor pressure deficit and global radiation; multiple linear regressions explained 30–52% of dSRV variance being dominated by relative humidity, precipitation, and soil water content. Best growth performance was observed at the German site, likely for a continuous water supply throughout the year, underlining the potential of Lebanon Cedar for Central European Forestry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Final annual tree-ring width

bE:

Onset of the enlarging phase

bL:

Onset of the cell-wall lignification phase

bM:

Onset of the mature phase

CA:

Cambial activity

cE:

Cessation of the enlarging phase

cL:

Cessation of the cell-wall lignification phase

CRF:

Cedar Research Forest

d :

Time required for major period of tree-ring formation

dE:

Duration of the enlarging phase

dL:

Duration of the lignification phase

DOY:

Day of year

dSRV:

Daily stem radius variation

dX:

Duration of xylogenesis

EBG:

Ecological Botanical Gardens

gR:

Global radiation

LAI:

Leaf area index

MAT:

Mean annual air temperature

Pp:

Precipitation

r :

Mean tree-ring formation rate (during growth period)

rH:

Relative air humidity

RSI:

Radial stem increase

ST:

Stem temperature

SWC:

Soil water content

Ta:

Air temperature (Tamean: daily mean, Tamax: daily maximum, and Tamin: daily minimum)

TAP:

Total annual precipitation

t p :

Time of inflection point

Ts:

Soil temperature

VPD:

Vapor pressure deficit

References

  • Akgül E, Yılmaz A (1986) Relationship between growth characteristics of Taurus cedar (Cedrus libani A. Rich) and the ecological properties of reforestation areas outside the natural stands. Ormancılık Araştırma Enstitüsü Müdürlüğü Teknik Bülten Serisi No 188

  • Akkemik Ü (2003) Tree rings of Cedrus libani at the northern boundary of its natural distribution. IAWA J 24:63–73

    Article  Google Scholar 

  • Anfodillo T, Deslauriers A, Menardi R, Tedoldi L, Petit G, Rossi S (2012) Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J Exp Bot 63:837–845. doi:10.1093/jxb/err309

    Article  CAS  PubMed  Google Scholar 

  • Basaran MA et al (2008) Determining the actual state of Elmali cedar research forest by GIS based digitl maps (in Turkish with english abstract). Çevre ve Orman Bakanlığı Yayın 353:1–331

    Google Scholar 

  • Bouriaud O, Leban J-M, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660

    Article  CAS  PubMed  Google Scholar 

  • Boydak M (2007) Reforestation of Lebanon cedar (Cedrus libani A. Rich.) in bare karstic lands by broadcast seeding in Turkey. In: Leone V. (ed.), Lovreglio R. (ed.). Proceedings of the international workshop MEDPINE 3: conservation, regeneration and restoration of Mediterranean pines and their ecosystems. Bari: CIHEAM, 2007. pp 33–42 (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 75)

  • Brooks JR, Jiang L, Ozçelik R (2008) Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. For Ecol Manage 256:147–151

    Article  Google Scholar 

  • Camarero JJ, Guerrero-Campo J, Gutiérrez E (1998) Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees. Arct Alp Res 30:1–10

    Article  Google Scholar 

  • Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480. doi:10.1111/j.1469-8137.2009.03073.x

    Article  PubMed  Google Scholar 

  • Carus S, Catal Y (2010) Growth response of Lebanon cedar (Cedrus libani) plantations to thinning intensity in Western Turkey. J Environ Biol 31:609–614

    PubMed  Google Scholar 

  • Chan T, Hölttä T, Berninger F, Mäkinen H, Nöjd P, Mencuccini M, Nikinmaa E (2016) Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant, Cell Environ 39:233–244

    Article  CAS  Google Scholar 

  • Cheng C, Gordon IL (2000) The Richards function and quantitative analysis of germination and dormancy in meadowfoam (Limnanthes alba). Seed Sci Res 10:265–277

    Google Scholar 

  • Ciais P et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Cocozza C, Palombo C, Tognetti R, La Porta N, Anichini M, Giovannelli A, Emiliani G (2016) Monitoring intra-annual dynamics of wood formation with microcores and dendrometers in Picea abies at two different altitudes. Tree Physiol 00:1–15

    Google Scholar 

  • Cuny HE, Rathgeber CB, Lebourgeois F, Fortin M, Fournier M (2012) Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiol 32:612–625

    Article  PubMed  Google Scholar 

  • Cuny HE, Rathgeber CB, Frank D, Fonti P, Fournier M (2014) Kinetics of tracheid development explain conifer tree-ring structure. New Phytol 203:1231–1241

    Article  PubMed  Google Scholar 

  • de Luis M, Gričar J, Čufar K, Raventós J (2007) Seasonal dynamics of wood formation in Pinus halepensis from dry and semi-arid ecosystems in Spain. IAWA J 28:389–404

    Article  Google Scholar 

  • de Luis M, Novak K, Raventós J, Gričar J, Prislan P, Čufar K (2011) Cambial activity, wood formation and sapling survival of Pinus halepensis exposed to different irrigation regimes. For Ecol Manage 262:1630–1638

    Article  Google Scholar 

  • del Castillo EM, Longares LA, Gričar J, Prislan P, Gil-Pelegrín E, Čufar K, De Luis M (2016) Living on the edge: contrasted wood-formation dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean conditions. Front Plant Sci 7:1–10

    Google Scholar 

  • Deslauriers A, Morin H, Begin Y (2003a) Cellular phenology of annual ring formation of Abies balsameain the Quebec boreal forest (Canada). Can J For Res 33:190–200. doi:10.1139/x02-178

    Article  Google Scholar 

  • Deslauriers A, Morin H, Urbinati C, Carrer M (2003b) Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Quebec (Canada). Trees 17:477–484. doi:10.1007/s00468-003-0260-4

    Article  Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T (2007) Dendrometer and intra-annual tree growth: what kind of information can be inferred? Dendrochronologia 25:113–124. doi:10.1016/j.dendro.2007.05.003

    Article  Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008) Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol 28:863–871

    Article  PubMed  Google Scholar 

  • Downes G, Beadle C, Worledge D (1999) Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees 14:102–111

    Google Scholar 

  • Drew DM, Downes GM (2009) The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27:159–172. doi:10.1016/j.dendro.2009.06.008

    Article  Google Scholar 

  • Ducci F, Fusaro E, Lucci S, Ricciotti L (2007) Strategies for finalizing Conifers experimental tests to the production of improved reproductive materials. In: Proceedings of the Inter. Workshop MEDPINE3 “Conservation, Regeneration and restauration of Mediterranean Pines and thei Ecosystems” (Valenzano-BA, 2005) Options médit., Serie A, 2007, vol 75, pp 99–104

  • Foken T (2007) Das Klima von Bayreuth. Standort 31:150–152. doi:10.1007/s00548-007-0045-x

    Article  Google Scholar 

  • Gricar J, Zupancic M, Cufar K, Koch G, Schmitt U, Oven P (2006) Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Ann Bot 97:943–951. doi:10.1093/aob/mcl050

    Article  PubMed  PubMed Central  Google Scholar 

  • Güney A, Kerr D, Sökücü A, Zimmermann R, Küppers M (2015) Cambial activity and xylogenesis in stems of Cedrus libani A. Rich at different altitudes. Bot Stud. doi:10.1186/s40529-015-0100-z

    Google Scholar 

  • Herzog KM, Häsler R, Thum R (1995) Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees 10:94–101

    Article  Google Scholar 

  • Huang JG, Bergeron Y, Zhai L, Denneler B (2011) Variation in intra-annual radial growth (xylem formation) of Picea mariana (Pinaceae) along a latitudinal gradient in western Quebec, Canada. Am J Bot 98:792–800. doi:10.3732/ajb.1000074

    Article  PubMed  Google Scholar 

  • Huber G, Storz C (2014) Zedern und Riesenlebensbaum—Welche Herkünfte sind bei uns geeignet? LWF-Wissen 74:63–71

    Google Scholar 

  • Kavgacı A, Başaran S, Başaran M (2010) Cedar forest communities in Western Antalya (Taurus Mountains, Turkey). Plant Biosystems 144:271–287

    Article  Google Scholar 

  • Köcher P, Horna V, Leuschner C (2012) Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiol 32:1021–1032

    Article  PubMed  Google Scholar 

  • Köstner B, Falge EM, Alsheimer M, Geyer R, Tenhunen JD (1998) Estimating tree canopy water use via xylem sapflow in an old Norway spruce forest and a comparison with simulation-based canopy transpiration estimates. In: Annales des Sciences Forestières, 1998, vol 1–2. EDP Sciences, pp 125–139

  • Linares JC, Camarero JJ, Carreira JA (2009) Plastic responses of Abies pinsapo xylogenesis to drought and competition. Tree Physiol 29:1525–1536

    Article  PubMed  Google Scholar 

  • Liphschitz N, Lev-Yadun S (1986) Cambial activity of evergreen and seasonal dimorphics around the Mediterranean. IAWA J 7:145–153

    Article  Google Scholar 

  • Lupi C, Morin H, Deslauriers A, Rossi S (2010) Xylem phenology and wood production: resolving the chicken-or-egg dilemma. Plant, Cell Environ 33:1721–1730. doi:10.1111/j.1365-3040.2010.02176.x

    Article  Google Scholar 

  • Mäkinen H, Nöjd P, Saranpää P (2003) Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiol 23:959–968

    Article  PubMed  Google Scholar 

  • Mäkinen H, Seo J-W, Nöjd P, Schmitt U, Jalkanen R (2008) Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. Eur J Forest Res 127:235–245. doi:10.1007/s10342-007-0199-x

    Article  Google Scholar 

  • Messinger J, Güney A, Zimmermann R, Ganser B, Bachmann M, Remmele S, Aas G (2015) Cedrus libani: a promising tree species for Central European forestry facing climate change? Eur J Forest Res 134(6):1005–1017

    Article  Google Scholar 

  • Michelot A, Simard S, Rathgeber C, Dufrene E, Damesin C (2012) Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol 32:1033–1045

    Article  PubMed  Google Scholar 

  • Moser L, Fonti P, Buntgen U, Esper J, Luterbacher J, Franzen J, Frank D (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30:225–233. doi:10.1093/treephys/tpp108

    Article  PubMed  Google Scholar 

  • Oberhuber W, Gruber A (2010) Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees 24:887–898

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberhuber W, Gruber A, Kofler W, Swidrak I (2014) Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site. Eur J Forest Res 133:467–479

    Article  Google Scholar 

  • Pantin F, Simonneau T, Muller B (2012) Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol 196:349–366. doi:10.1111/j.1469-8137.2012.04273.x

    Article  PubMed  Google Scholar 

  • Rathgeber CB, Rossi S, Bontemps JD (2011a) Cambial activity related to tree size in a mature silver-fir plantation. Ann Bot 108:429–438. doi:10.1093/aob/mcr168

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathgeber CBK, Longuetaud F, Mothe F, Cuny H, Le Moguédec G (2011b) Phenology of wood formation: data processing, analysis and visualisation using R (package CAVIAR). Dendrochronologia 29:139–149. doi:10.1016/j.dendro.2011.01.004

    Article  Google Scholar 

  • Ren P, Rossi S, Gricar J, Liang E, Cufar K (2015) Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? Ann Bot 115:629–639

    Article  PubMed  PubMed Central  Google Scholar 

  • Risse M (2013) Holzeigenschaften der Libanonzeder (Cedrus libani A. Rich) aus dem Ökologisch-Botanischen Garten Bayreuth, Master thesis, Technical University of Munich, Faculty of Forest Science and Resource Management, Munich

  • Rossi S, Anfodillo T, Menardi R (2006a) Trephor: a new tool for sampling microcores from tree stems. IAWA J 27:89–97

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T (2006b) Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the Alpine timberline. IAWA J 27:383–394

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006c) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310. doi:10.1111/j.1469-8137.2006.01660.x

    Article  PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152:1–12. doi:10.1007/s00442-006-0625-7

    Article  PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008a) Age-dependent xylogenesis in timberline conifers. New Phytol 177:199–208. doi:10.1111/j.1469-8137.2007.02235.x

    PubMed  Google Scholar 

  • Rossi S et al (2008b) Critical temperatures for xylogenesis in conifers of cold climates. Glob Ecol Biogeogr 17:696–707. doi:10.1111/j.1466-8238.2008.00417.x

    Article  Google Scholar 

  • Senitza E (1989) Waldbauliche Grundlagen der Libanonzeder (Cedrus libani A.Rich) im Westtaurus/Türkei. Dissertation der Universität für Bodenkultur in Wien 34, Wien

  • Steppe K, Sterck F, Deslauriers A (2015) Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci 20:335–343

    Article  CAS  PubMed  Google Scholar 

  • Stocker TF (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Tardif J, Flannigan M, Bergeron Y (2001) An analysis of the daily radial activity of 7 boreal tree species, northwestern Quebec. Environ Monit Assess 67:141–160

    Article  CAS  PubMed  Google Scholar 

  • Thibeault-Martel M, Krause C, Morin H, Rossi S (2008) Cambial activity and intra-annual xylem formation in roots and stems of Abies balsamea and Picea mariana. Ann Bot 102:667–674. doi:10.1093/aob/mcn146

    Article  PubMed  PubMed Central  Google Scholar 

  • Turkish State Meteorology Service (2005) Ortalama ve Ekstrem Kıymetler. Meteoroloji Bültenleri, Turkish State Meteorology Service, Ankara

    Google Scholar 

  • Urrutia-Jalabert R, Rossi S, Deslauriers A, Malhi Y, Lara A (2015) Environmental correlates of stem radius change in the endangered Fitzroya cupressoides forests of southern Chile. Agric For Meteorol 200:209–221

    Article  Google Scholar 

  • Vieira J, Rossi S, Campelo F, Freitas H, Nabais C (2013) Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agric For Meteorol 180:173–181

    Article  Google Scholar 

  • Vieira J, Rossi S, Campelo F, Freitas H, Nabais C (2014) Xylogenesis of Pinus pinaster under a Mediterranean climate. Ann For Sci 71:71–80. doi:10.1007/s13595-013-0341-5

    Article  Google Scholar 

  • Wang Z, Yang B, Deslauriers A, Bräuning A (2015) Intra-annual stem radial increment response of Qilian juniper to temperature and precipitation along an altitudinal gradient in northwestern China. Trees 29:25–34

    Article  Google Scholar 

  • Wimmer R, Downes GM, Evans R (2002) High-resolution analysis of radial growth and wood density in Eucalyptus nitens, grown under different irrigation regimes. Ann For Sci 59:519–524

    Article  Google Scholar 

  • Zhai L, Bergeron Y, Huang JG, Berninger F (2012) Variation in intra-annual wood formation, and foliage and shoot development of three major Canadian boreal tree species. Am J Bot 99:827–837. doi:10.3732/ajb.1100235

    Article  PubMed  Google Scholar 

  • Zweifel R, Häsler R (2001) Link between diurnal stem radius changes and tree water relations. Tree Physiol 21:869–877

    Article  CAS  PubMed  Google Scholar 

  • Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57:1445–1459. doi:10.1093/jxb/erj125

    Article  CAS  PubMed  Google Scholar 

  • Zweifel R, Haeni M, Buchmann N, Eugster W (2016) Are trees able to grow in periods of stem shrinkage? New Phytol. doi:10.1111/nph.13995

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was carried out within the project funded by the German Federal Ministry of Education and Research (01DL12041) and in cooperation with the Southwest Anatolian Forest Research Institute (SAFRI) in Antalya and the Ecological Botanical Gardens in Bayreuth (EBG). We would like to thank all who have contributed to this work, with special thanks to Neşat Erkan and the employees of SAFRI as well as to Gregor Aas and the employees at the EBG. Furthermore, we would like to thank Özdemir Şentürk, Serkan Gülsoy, Dieter Schmitt, Helmut Dalitz, Sabine Remmele, and Viviana Horna for their contributions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aylin Güney.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Liang.

An erratum to this article is available at http://dx.doi.org/10.1007/s00468-017-1561-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güney, A., Küppers, M., Rathgeber, C. et al. Intra-annual stem growth dynamics of Lebanon Cedar along climatic gradients. Trees 31, 587–606 (2017). https://doi.org/10.1007/s00468-016-1492-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1492-4

Keywords

Navigation