Skip to main content

Advertisement

Log in

Climatic variability at the treeline of Monte Tlaloc, Mexico: a dendrochronological approach

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

An increase in winter-spring precipitation appears to have a positive effect on radial growth of P. hartwegii a treeline species in Mexican volcanoes.

Abstract

To address the degree to which high-elevation trees reflect climatic variability, a ring-width chronology of 308 years (1705–2012) was developed from a pure stand of Pinus hartwegii forest at the upper treeline of Monte Tlaloc in the Trans-Mexican Volcanic System. A series of variables were used to verify the climatic correlation of the chronology, including climate data, historical archives dealing with agricultural crises and climate anomalies in central Mexico, regional dendroclimatic reconstructions of precipitation, values of the Southern Oscillation Index (SOI), and Tropical Rainfall Index, which are estimators of El Niño/Southern Oscillation phenomena (ENSO). Correlations with local and regional climate data suggested that wet conditions in the winter–spring season had a positive effect on radial growth. Reduced growth was associated with extreme droughts in central Mexico, with some exceptions, such as in 1997, when, due to the massive warming of sea surface temperatures and low precipitation, growth did not begin until May or June and peaked during the cool season. The ring-width chronology indicated an increase in radial growth when SOI values were negative and precipitation was above-mean during the growing season. The lowest recorded growth measurements are associated with extreme droughts and strong warm ENSO events. Given the significant relationship between climate and radial growth of P. hartwegii, this study highlights the potential vulnerability of this high-elevation species to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 4:660–684

    Article  Google Scholar 

  • Anchukaitis KA, Taylor MJ, Martin-Fernandez J, Pons D, Dell M, Chopp C, Castellanos EJ (2013) Annual chronology and climate response in Abies guatemalensis Rehder (Pinaceae) in Central America. Holocene 2:270–277

    Article  Google Scholar 

  • Anderegg WR, Kane JM, Anderegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3:30–36

    Article  Google Scholar 

  • Beck PS, Juday GP, Alix C et al (2011) Changes in forest productivity across Alaska consistent with biome shift. Ecol Lett 14:373–379

    Article  PubMed  Google Scholar 

  • Beniston M, Diaz HF, Bradley RS (1997) Climatic change at high elevation sites: an overview. Clim Change 36:233–251

    Article  Google Scholar 

  • Biondi F (2001) A 400-year tree-ring chronology from the tropical treeline of North America. Ambio 3:162–166

    Article  Google Scholar 

  • Biondi F, Hartsough PC, Galindo-Estrada I (2005) Daily weather and tree growth at the tropical treeline of North America. Arct Antarct Alp Res 37:16–24

    Article  Google Scholar 

  • Bradley RS, Keimig FT, Diaz HF (2004) Projected temperature changes along the American cordillera and the planned GCOS network. Geophys Res Lett 31:L16210

    Article  Google Scholar 

  • Camarero JJ, Gutiérrez M (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Change 63:181–200

    Article  Google Scholar 

  • Case MJ, Peterson DL (2007) growth-climate relations of lodgepole pine in the North Cascades National Park, Washington. Northwest Sci 81:62–75

    Article  Google Scholar 

  • Cleaveland MK, Stahle DW, Therrell MD, Villanueva-Díaz J, Burns BT (2003) Tree-ring reconstructed precipitation and tropical teleconnections in Durango, Mexico. Clim Change 3:369–388

    Article  Google Scholar 

  • CLICOM (Clima Computarizado) (2015) Base de datos. http://clicom-mex.cicese.mx. Accessed Jul 2015

  • Conde C, Liverman D, Flores M, Ferrer R, Araujo R, Betancourt E, Villarreal G, Gay C (1997) Vulnerability of rainfed maize crops in Mexico to climate change. Clim Res 9:17–23

    Article  Google Scholar 

  • Cook ER (1987) The decomposition of tree-ring series for environmental studies. Tree Ring Bull 47:37–59

    Google Scholar 

  • Cook ER, Holmes RH (1986) Guide for computer program ARSTAN. Laboratory of Tree-Ring Research, The University of Arizona, Arizona

    Google Scholar 

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull 41:45–53

    Google Scholar 

  • CRI-UAEMéx (2007) Centro de Recursos Idrisi-México. Módulos geomáticos desarrollados por el laboratorio de hidrogeomática del Centro Interamericano de Recursos del Agua (CIRA) sede del CRI-UAMéx. Universidad Autónoma del Estado de México. http://idrisi.uaemex.mx. Accessed July 2015

  • Cuervo-Robayo AP, Téllez-Valdés O, Gómez-Albores MA, Venegas-Barrera CS, Manjarrez J, Martínez-Meyer E (2013) An update of high-resolution monthly climate surfaces for Mexico. Int J Climatol. doi:10.1002/joc.3848

    Google Scholar 

  • D’Arrigo R, Jacoby G, Buckley B et al (2009) Tree growth and inferred temperature variability at the North American Arctic treeline. Glob Planet Change 65:71–82

    Article  Google Scholar 

  • De la Lanza-Espino G, García-Calderón JL (2002) Historical summary of the geology, climate, hydrology, culture and natural resource utilization in the Basin of Mexico. In: Fenn E, de Bauer LI, Hernández-Tejeda T (eds) Urban air pollution and forest. Springer, Berlin, pp 3–23

    Chapter  Google Scholar 

  • DeSoto L, Varino F, Andrade JP et al (2014) Different growth sensitivity to climate of the conifer Juniperus thurifera on both sides of the Mediterranean Sea. Int J Biometeorol. doi:10.1007/s00484-014-0811-y

    PubMed  Google Scholar 

  • Diaz SC, Therrell T, Stahle DW, Cleaveland MK (2002) Chihuahua winter-spring precipitation reconstructed from tree-rings, 1647–1992. Clim Res 22:237–244

    Article  Google Scholar 

  • Diaz HF, Grosjean M, Graumlich LJ (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4

    Article  Google Scholar 

  • Driscoll WW, Wiles GC, D’Arrigo RD, Wilmking M (2005) Divergent tree growth response to recent climatic warming, Lake Clark National Park and Preserve, Alaska. Geophys Res Lett 32:1–4

    Article  Google Scholar 

  • Duncan BN, Martin RV, Staudt AC, Yevich R, Logan JA (2003) Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J Geophys Res 108:1–13

    Google Scholar 

  • Endara-Agramont AR, Nava-Bernal G, Regil-García HH, Franco-Maass S (2012) Por los senderos de Tláloc: el bosque y la montaña. Gobierno del Estado de México y Universidad Autónoma del Estado de México, Monte Tláloc II, la casa del Dios del Agua. Dirección de Difusión y Promoción de la Investigación y los Estudios Avanzados (SIEA) UAEM, Mexico, pp 89–108

    Google Scholar 

  • Enfield DB (1996) Relationships of inter-American rainfall to tropical Atlantic and Pacific SST variability. Geophys Res Lett 23:3305–3308

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM (2000) Global Modes of ENSO and non-ENSO sea surface temperature variability and their associations with climate. In: Diaz HF, Markgraf V (eds) El Niño and the Southern Oscillation: Multiscale variability and global and regional impacts. Cambridge University, Cambridge

    Google Scholar 

  • Englehart PJ, Douglas AV (2000) Dissecting the macro-scale variations in Mexican maize yields (1961–1997). Geogr Environ Model 4:65–81

    Article  Google Scholar 

  • Fang J, Kato T, Guo Z, Yang Y, Hu H, Shen H, Zhao X, KishimotoMo AW, Tang Y, Houghton RA (2014) Evidence for environmentally enhanced forest growth. PNAS 111:9527–9532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florescano E (1980) Análisis histórico de las sequías en México. Secretaría de Agricultura y Recursos Hidráulicos, Comisión del Plan Nacional Hidráulico, Mexico

    Google Scholar 

  • Florescano E (1986) Precios del maíz y crisis agrícolas en México: 1708–1810. Ediciones Era, Mexico

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • García E (1978) Apuntes de climatología. Universidad Nacional Autónoma de México, Mexico

    Google Scholar 

  • García E (2004) Modificaciones al sistema de clasificación climática de Köppen, para adaptarlo a las condiciones de la República Mexicana. Instituto de Geografía, Universidad Nacional Autónoma de México, México

    Google Scholar 

  • Garza-Merodio GG (2002) Frecuencia y duración de sequías en la cuenca de México de fines del siglo XVI a mediados del XIX. Invest Geogr Bull Inst Geogr UNAM 48:106–115

    Google Scholar 

  • GGWS (Golden Gate Weather Services). 2016. El Niño and La Niña Years and Intensities. http://ggweather.com/enso/oni.htm. Accessed May 2016

  • Giannini A, Kushnir Y, Cane MA (2001) Seasonality in the impact of ENSO and the North Atlantic high on Caribbean rainfall. Phys Chem Earth Part B 2:143–147

    Article  Google Scholar 

  • Gibson C (1964) The Aztecs under Spanish rule: A history of the Indians of the Valley of Mexico, 1519–1810. Stanford University Press, USA

    Google Scholar 

  • Goldblum D (2010) The geography of white oak’s (Quercus alba L.) response to climatic variables in North America and speculation on its sensitivity to climate change across its range. Dendrochronologia 28:73–83

    Article  Google Scholar 

  • Google Inc. (2013) Google Earth, Satellite image

  • Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree Ring Res 57:205–221

    Google Scholar 

  • Hoerling M, Kumar A (2003) The perfect ocean for drought. Science 299:691–694

    Article  CAS  PubMed  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • Holtmeier FK (2009) Mountain Timberlines. Ecology, patchiness and dynamics. Advances in Global Change Research. Springer, USA

    Google Scholar 

  • Hutchinson MF (2006) Anusplin Version 4.36 User Guide. Centre for Resource and Environmental Studies, Canberra

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • JISAO (Joint Institute for the Study of Atmosphere and Ocean) (2016) El Niño Index 1525–1987. http://research.jisao.washington.edu/data_sets/quinn/#criterion. Accessed May 2016

  • Karmalkar AV, Bradley RS, Diaz HF (2011) Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim Dyn 37:605–629. doi:10.1007/s00382-011-1099-9

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  PubMed  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Lebourgeois F, Rathgeber CB, Ulrich E (2010) Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J Veg Sci 21:364–376

    Article  Google Scholar 

  • Magaña V, Pérez JL, Vázquez LL, Carrizosa E, Pérez J (1999) El Niño y el clima. In: Magaña V (ed) Los impactos del Niño en México. SEP-CONACYT, Mexico, pp 23–68

    Google Scholar 

  • Magaña VO, Vázquez JL, Pérez JL, Pérez JB (2003) Impact of El Niño on precipitation in Mexico. Geofís Int 42:313–330

    Google Scholar 

  • Marino-Cabrera H (2002) Respuestas ecofisiológicas de plantas en ecosistemas de zonas con clima mediterráneo y ambientes de altamontaña. Revista Chilena de Historia Natural 75:625–637

    Google Scholar 

  • Mayr S, Wolfschwenger M, Bauer H (2002) Winter-drought induced embolism in Norway spruce (Picea abies) at the Alpine timberline. Physiol Plant 115:74–80

    Article  CAS  PubMed  Google Scholar 

  • McDowell N, Allen CD, Marshall L (2010) Growth, carbon isotope discrimination, and climate-induced mortality across a Pinus ponderosa elevation transect. Glob Change Biol 16:399–415

    Article  Google Scholar 

  • Méndez M, Magaña V (2010) Regional aspects of prolonged meteorological droughts over Mexico and Central America. J Climate 23:1175–1188

    Article  Google Scholar 

  • Metcalfe SE (1987) Historical data and climatic change in Mexico-a review. Geogr J 153:211–222

    Article  Google Scholar 

  • Montero I (2002) Atlas arqueológico de la Alta Montaña Mexicana. SEMARNAT-CONAFOR, Mexico

    Google Scholar 

  • NOAA (National Oceanic and Atmospheric Administration) (2014a) Climate Variability: Southern Oscillation Index. http://www.climate.gov/news-features/understanding-climate/climate-variability-southern-oscillation-index. Accessed Jul 2014

  • NOAA (National Oceanic and Atmospheric Administration) (2014b) El Niño/Southern Oscillation (ENSO). Episodios históricos ELNINO/LA NINA (1950 al presente). Changes in the Oceanic Niño Index (ONI). In: Center for weather and climate prediction. http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml. Accessed Jul 2014

  • NOAA (National Oceanic and Atmospheric Administration) (2015) Southern Oscillation Index (SOI). http://www.cpc.ncep.noaa.gov/data/indices/soi. Accessed Oct 2015

  • O´Hara SL, Metcalfe SE (1995) Reconstructing the climate of Mexico from historical records. Holocene 5:485–490

    Article  Google Scholar 

  • Pederson N, Cook ER, Jacoby GC et al (2004) The influence of winter temperatures on the annual radial growth of six northern range margin tree species. Dendrochronologia 22:7–29

    Article  Google Scholar 

  • Perry JP Jr (1991) The Pines of Mexico and Central America. Timber Press, Portland

    Google Scholar 

  • Quinn WH (1992) A study of Southern Oscillation-related climatic activity for A.D. 622–1900 incorporating Nile River flood data. In: Diaz HF, Markgraf V (eds) El Niño historical and paleoclimatic aspects of the Southern Oscillation. Cambridge University, Cambridge, pp 119–149

    Google Scholar 

  • Ricker M, Gutiérrez-García G, Daly DC (2007) Modeling long-term tree growth curves in response to warming climate: test cases from a subtropical mountain forest and a tropical rainforest in Mexico. Can J For Res 37:977–989

    Article  Google Scholar 

  • Robinson WJ, Evans R (1980) A microcomputer-based tree-ring measuring system. Tree Ring Bull 40:59–64

    Google Scholar 

  • Ropelewskik C, Halpert M (1986) North American precipitation and temperature patterns associated with El Nino/Southern Oscillation (ENSO). Mon Weather Rev 114:2352–2362

    Article  Google Scholar 

  • Schweingruber FH (1988) Tree rings-basics and applications of dendrochronology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Seager R, Ting M, Davis M, Cane M, Nike N, Nakumara J, Lie C, Cook E, Stahle D (2009) Mexican drought: an observational modeling and tree ring study of variability and climate change. Atmosfera 1:1–31

    Google Scholar 

  • Stahle DW, D’Arrigo RD, Krusic PJ, Cleaveland MK, Cook ER, Allan RJ, Cole JE, Dunbar RB, Therrell MD, Gay DA, Moore MD, Stokes MA, Burns BT, Villanueva-Díaz J, Thompson LG (1998) Experimental dendroclimatic reconstruction of the Southern Oscillation. Bull Am Meteorol Soc 10:2137–2152

    Article  Google Scholar 

  • Stahle DW, Villanueva-Díaz J, Cleaveland MK, Therrell MD, Paull GJ, Burns BT, Salinas W, Suzan H, Fulé PZ (2000) Recent tree-ring research in Mexico. In: Roig FA (Compil) Dendrocronología en América Latina. Editorial de la Universidad Nacional del Cuyo (EDIUNC), Mendoza, Argentina

  • Stahle DW, Burnette DJ, Villanueva-Díaz J, Heim RR Jr, Fye FK, Cerano-Paredes J, Acuña-Soto R, Cleaveland MK (2012) Pacific and Atlantic influences in Mesoamerican over the past millennium. Clim Dyn 6:1431–1446

    Article  Google Scholar 

  • Steinkamp J, Hickler T (2015) Is drought-induced forest dieback globally increasing? J Ecol 103:31–43

    Article  Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago

    Google Scholar 

  • Swam SL (1981) Mexico in the little ice age. J Interdiscipl Hist 11:633–648

    Article  Google Scholar 

  • Therrell MD, Stahle DW, Cleaveland MK, Villanueva-Díaz J (2002) Warm season tree growth and precipitation over Mexico. J Geophys Res 14:1–8

    Google Scholar 

  • Therrell MD, Stahle DW, Villanueva-Díaz J, Cornejo-Oviedo E, Cleaveland MK (2006) Tree-ring reconstructed maize yield in central Mexico: 1474–2001. Clim Change 4:493–504

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 12:2771–2777

    Article  Google Scholar 

  • Trenberth KE, Hoar TJ (1997) El Niño and climate change. Geophys Res Lett 23:3057–3060

    Article  Google Scholar 

  • Van Mantgem PJ, Stephenson NL, Byrne JC et al (2009) Widespread increase of tree mortality rates in the Western United States. Science 323:521–524

    Article  PubMed  Google Scholar 

  • Villanueva-Díaz J, Stahle DW, Luckman BH, Cerano-Paredes J, Therrell MD, Cleaveland MK, Cornejo-Oviedo E (2007) Winter-spring precipitation reconstructions from tree rings for northeast Mexico. Clim Change 83:117–131

    Article  Google Scholar 

  • Villanueva-Díaz J, Cerano-Paredes J, Stahle DW, Constante-García V, Vázquez-Selem L, Estrada-Avalos J, Benavides-Solorio JD (2010) Árboles longevos de México. Rev Mex Cienc For 2:1–23

    Google Scholar 

  • Villanueva-Díaz J, Cerano-Paredes J, Vázquez-Selem L, Stahle DW, Fulé PZ, Yocom LL, Franco-Ramos O, Ruiz-Corral JA (2015) Red dendrocronológica del pino de altura (Pinus hartwegii Lindl.) para estudios dendroclimáticos en el noreste y centro de México. Invest Geogr Bull Inst Geogr UNAM 86:5–14. doi:10.14350/rig.42003

    Google Scholar 

  • Waliser DE, Gautier C (1993) A satellite-derived climatology of the ITCZ. J Climate 6:2162–2174

    Article  Google Scholar 

  • Wright PB (1979) Persistence of rainfall anomalies in the central Pacific. Nature 277:371–374

    Article  Google Scholar 

  • Yu D, Liu J, Benard JL et al (2013) Spatial variation and temporal instability in the climate-growwth relationship of Korean pine in the Changbai Mountain region of Northeast China. For Ecol Manag 300:96–105

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible thanks to the support provided by the Instituto de Ciencias Agropecuarias y Rurales of the Universidad Autónoma del Estado de México (ICAR-UAEMéx) and the Laboratory of Dendrochronology of the Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP-CENID-RASPA). We would like to thank Juan Carlos Arrocena-López and Noé Antonio Aguirre-González for their collaboration in fieldwork and laboratory analysis. We are very grateful to Raymundo Sierra-Ordoñez for his support in providing climate data through the ANUSPLIN interpolation scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel R. Endara-Agramont.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. Leavitt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astudillo-Sánchez, C.C., Villanueva-Díaz, J., Endara-Agramont, A.R. et al. Climatic variability at the treeline of Monte Tlaloc, Mexico: a dendrochronological approach. Trees 31, 441–453 (2017). https://doi.org/10.1007/s00468-016-1460-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1460-z

Keywords

Navigation