Skip to main content
Log in

Xylem traits and water-use efficiency of woody species co-occurring in the Ti Tree Basin arid zone

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Species with low density of intact branches are likely to have higher growth rates than species with high density of intact branches, but at the cost of a lower water-use efficiency and larger sensitivity to xylem embolism.

Abstract

The hydraulic niche separation theory proposes that species co-exist by having a range of traits to allow differential access to resources within heterogeneous environments. Here, we examined variation in branch xylem anatomy and foliar carbon stable isotopes (δ13C) as a measure of water-use efficiency (WUE) in seven co-occurring species, Acacia aneura, Acacia bivenosa, Corymbia opaca, Eucalyptus camaldulensis, Erythrina vespertilio, Hakea sp., and Psydrax latifolia, in an arid zone open Corymbia savanna on the Ti Tree Basin, Northern Territory, Australia. We test the following hypotheses: (1) Species with large conductive areas exhibit a low density of intact branches, while species with small conductive areas have a significantly higher density of intact branches. (2) Species with smaller conductive areas exhibit more enriched values of δ13C and therefore have larger WUE than those with larger conductive areas and (3) there is an inverse correlation between theoretical sapwood hydraulic conductivity and vessel implosion resistance. The results of this study demonstrated significant variation in density of intact branches, ranging from 0.38 to 0.80 g cm−3 and this variation was largely explained by variation in sapwood conductive area. Species with low conductive areas (P. latifolia, Hakea sp. and Acacia species) exhibited large values of WUE (r 2 = 0.62, p < 0.05). These species are likely to be less vulnerable to cavitation by having small conductive areas and thicker fibre walls. We demonstrated a significant (r 2 = 0.83, p = 0.004) negative correlation between theoretical sapwood hydraulic conductivity and vessel implosion resistance. These results are discussed in relation to hydraulic niche separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Australian Bureau of Meteorology (2014) Australian Bureau of Meteorology home page. Commonwealth of Australia: Canberra. http://www.bom.gov.au. Accessed 1 Nov 2014

  • Ball MC (1988) Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina I. Water use in relation to growth, carbon partitioning, and salt balance. Aust J Plant Physiol 15:447–464. doi:10.1071/PP9880447

    Article  Google Scholar 

  • Bucci SJ, Goldstein G, Meinzer FC, Scholz FG, Franco AC, Bustamante M (2004) Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiol 24:891–899. doi:10.1093/treephys/24.8.891

    Article  CAS  PubMed  Google Scholar 

  • Carbon dioxide information analysis center (2014) http://cdiac.ornl.gov/. Accessed 1 Sept 2014

  • Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. Am J Bot 64:887–896

    Article  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. doi:10.1111/j.1461-0248.2009.01285.x

    Article  PubMed  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. doi:10.1071/BT02124

    Article  Google Scholar 

  • Craven D, Hall JS, Ashton MS, Berlyn GP (2013) Water use efficiency and whole plant performance of nine tropical tree species at two sites with contrasting water availability in Panama. Trees 27:639–653. doi:10.1007/s00468-012-0818-0

    Article  Google Scholar 

  • Dunkerley D (2002) Systematic variation of soil infiltration rates within and between the components of the vegetation mosaic in an Australian desert landscape. Hydrol Process 16:119–131. doi:10.1001/hyp.357

    Article  Google Scholar 

  • Eamus D (1991) The interaction of rising CO2 and temperatures with water use efficiency. Plant Cell Environ 14:843–852. doi:10.1111/j.1365-3040.1991.tb01447.x

    Article  Google Scholar 

  • Eamus D (2003) How does ecosystem water balance affect net primary productivity of woody ecosystems? Funct Plant Biol 30:187–205. doi:10.1071/FP02084

    Article  Google Scholar 

  • Enquist B, West G, Charnov E, Brown J (1999) Allometric scaling of production and life-history variation in vascular plants. Nature 401:909–911. doi:10.1038/44819

    Article  Google Scholar 

  • Enquist BJ, Kerkhoff AJ, Stark SC, Swenson NG, McCarthy MC, Price CA (2007) A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Nature 449:218–222. doi:10.1038/nature06061

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes. Aust J Plant Physiol. 11:539–552. doi:10.1071/PP9840539

    Article  CAS  Google Scholar 

  • Froend RH, Drake PL (2006) Defining phreatophyte response to reduced water availability: preliminary investigations on the use of xylem cavitation vulnerability in Banksia woodland species. Aus J Bot. 54:173–179. doi:10.1071/BT05081

    Article  Google Scholar 

  • Gessler A, Brandes E, Buchmann N, Helle G, Rennenberg H, Barnard RL (2009) Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree-ring archive. Plant Cell Environ 32:780–795. doi:10.1111/j.1365-3040.2009.01957.x

    Article  CAS  PubMed  Google Scholar 

  • Groom PK (2004) Rooting depth and plant water relations explain species distribution patterns within a sandplain landscape. Func Plant Biol 31:423–428. doi:10.1071/FP03200

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461. doi:10.1007/s004420100628

    Article  Google Scholar 

  • Harrington GA, Cook PG, Herczeg AL (2002) Spatial and temporal variability of groundwater recharge in Central Australia: a tracer approach. Groundwater 40:518–528. doi:10.1111/j.1745-6584.2002.tb02536.x

    Article  CAS  Google Scholar 

  • Hasselquist N, Allen M, Santiago L (2010) Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia 164:881–890. doi:10.1007/s00468-012-0818-0

    Article  PubMed Central  PubMed  Google Scholar 

  • International Association of Wood Anatomists (IAWA) (2014). http://bio.kuleuven.be/sys/iawa/. Accessed 5 May 2015

  • Jacobsen AL, Ewers FW, Pratt B, Paddock WA, Davis SD (2005) Do xylem fibres affect vessel cavitation resistance? Plant Physiol 139:546–556. doi:10.1104/pp.104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • King DA, Davies SJ, Tan S, Noor NSM (2006) The role of wood density and stem support costs in the growth and mortality of tropical trees. J Ecol. 94:670–680. doi:10.1111/j.1365-2745.2006.01112.x

    Article  Google Scholar 

  • Kriedemann PE (1986) Stomatal and photosynthetic limitations to leaf growth. Aust J Plant Physiol. 13:15–32

    Article  Google Scholar 

  • Lachenbrunch B, McCulloh KA (2014) Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytol 204:747–764. doi:10.1111/nph.13035

    Article  Google Scholar 

  • Lewis AM (1992) Measuring the hydraulic diameter of a pore or conduit. Am J Bot 79:1158–1161

    Article  Google Scholar 

  • Marshall JD, Brooks JR, Lajtha K (2007) Sources of variation in the stable isotopic composition of plants. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell Publishing, Carlton, pp 22–60

    Chapter  Google Scholar 

  • Martínez-Cabrera HI, Estrada-Ruiz E (2014) Wood anatomy reveals high theoretical hydraulic conductivity and low resistance to vessel implosion in a cretaceous fossil forest from Northern Mexico. PloS One 10:e108866. doi:10.1371/journal.pone.0108866

    Article  Google Scholar 

  • Meinzer FC, Campanello PI, Domec J, Gatti MG, Goldstein G, Villalobos-Vega R, Woodruff DR (2008) Constraints on physiological function associated with branch architecture and wood density in tropical forest trees. Tree Physiol 28:1609–1617

    Article  PubMed  Google Scholar 

  • O’ Grady AP, Cook PG, Eamus D, Duguid A, Wischunsen JDH, Fass T, Worldege D (2009) Convergence of tree water use within an arid-zone woodland. Oecologia 160:643–655. doi:10.1007/s00442-009-1332-y

    Article  Google Scholar 

  • O’Grady AP, Eamus D, Cook PG, Lamontagne S (2006) Groundwater use by riparian vegetation in the wet-dry tropics of northern Australia. Aust J Bot 54:145–154. doi:10.1071/BT04164

    Article  Google Scholar 

  • Pausas JG (2015) Bark thickness and fire regime. Funct Ecol 29:315–327. doi:10.1111/1365-2435.12372

    Article  Google Scholar 

  • Pratt R, Jacobsen A, Ewers F, Davis S (2007) Relationships among xylem transport, biomechanics and storage and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798. doi:10.1111/j.1469-8137.2007.02061.x

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Australia. http://www.R-project.org

  • Santini NS, Schmitz N, Bennion V, Lovelock CE (2012) The anatomical basis of the link between density and mechanical strength in mangrove branches. Funct Plant Biol 40:400–408. doi:10.1071/FP12204

    Article  Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles-Wilhelm F (2007) Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees. Plant Cell Environ 30:236–248. doi:10.1111/j.1365-3040.2006.01623.x

    Article  PubMed  Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611. doi:10.1016/j.tree.2004.09.003

    Article  Google Scholar 

  • Silvertown J, Dodd ME, Gowing DJG, Mountford JO (1999) Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:61–63. doi:10.1038/21877

    Article  CAS  Google Scholar 

  • Sterck F, Markesteijn L, Schieving F, Poorter L (2011) Functional traits determine trade-offs and niches in a tropical forest community. PNAS 108:20627–20632. doi:10.1073/pnas.1106950108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Terradas J, Peñuelas J, Lloret F (2009) The fluctuation niche in plants. International Journal of Ecology 2009: ID 959702. doi:10.1155/2009/959702

  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360. doi:10.1111/j.1469-8137.1991.tb00035.x

    Article  Google Scholar 

  • Zanne A, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ, Coomes DA (2010) Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot 97:207–215. doi:10.3732/ajb.0900178

    Article  PubMed  Google Scholar 

  • Zieminska K, Butler DW, Gleason SM, Wright IJ, Westoby M (2013) Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB PLANTS 5:plt046; doi:10.1093/aobpla/plt046

Download references

Acknowledgments

We would like to thank the Endeavour Fellowships Scope Global, Australia for financial support (Grant number ERF_PDR_4065_2014). We also thank Dr. Sebastian Pfautsch from the University of Western Sydney. Jacqueline Loyola-Echeverría, Dr. Rachael Nolan and Tonantzin Tarin-Terrazas from the University of Technology Sydney, Dr. Nele Schmitz from the École Normale Supérieure de Lyon and Dr. Kasia Ziemińska from Macquaire University for laboratory assistance and advice during the planning and development of this study. This work was also supported by an ARC grant (DP140101150) awarded to Derek Eamus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia S. Santini.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Communicated by M. Zwieniecki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santini, N.S., Cleverly, J., Faux, R. et al. Xylem traits and water-use efficiency of woody species co-occurring in the Ti Tree Basin arid zone. Trees 30, 295–303 (2016). https://doi.org/10.1007/s00468-015-1301-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1301-5

Keywords

Navigation