Skip to main content

Advertisement

Log in

Buds buried in bark: the reason why Quercus suber (cork oak) is an excellent post-fire epicormic resprouter

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Cork oak has buds protected by the full thickness of its substantial phellem, thus explaining why it is the only European tree that can epicormically resprout after higher intensity fire.

Abstract

Epicormic resprouting has various ecological advantages over basal resprouting. However, after higher intensity fires epicormic resprouting is rare as it is difficult for trees and shrubs to keep both their buds and vascular cambia alive. Quercus suber (cork oak) is the only European tree that can resprout epicormically after higher intensity fires. Q. suber develops very thick bark and it has been assumed, without anatomical evidence, that the bark protects the epicormic buds. We investigated if developmental anatomy could explain why Q. suber is an excellent post-fire epicormic resprouter. We examined buds from mature Q. suber trees, macroscopically using a stereo microscope and microscopically using semi-thin microtome sections. Q. suber produced buds in the foliage leaf axils and the bud scale axils. With the commencement of extensive phellem (cork) production the base of the epicormic buds remained at, or just below, the level of the phellogen and thus cork began to bury the buds, although a narrow tube connected each bud to the bark surface. Q. suber epicormic buds became deeply buried in the phellem and would be protected from heat by the full phellem thickness. With its rapid and substantial development of phellem Q. suber had well-protected epicormic buds even in relatively small diameter stems. These results provide the anatomical evidence to show why Q. suber is a noted epicormic resprouter after crown fire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alla AQ, Camarero JJ, Palacio S, Montserrat-Martí G (2013) Revisiting the fate of buds: size and position drive bud mortality and bursting in two coexisting Mediterranean Quercus species with contrasting leaf habit. Trees Struct Funct 27:1375–1386

    Article  Google Scholar 

  • Bauer G, Speck T, Blömer J, Bertling J, Speck O (2010) Insulation capability of the bark of trees with different fire adaptation. J Mater Sci 45:5950–5959

    Article  CAS  Google Scholar 

  • Beentje H (2010) The Kew plant glossary an illustrated dictionary of plant terms. Kew Publishing, Royal Botanic Gardens, Kew

    Google Scholar 

  • Burrows GE (2000) An anatomical study of epicormic bud strand structure in Eucalyptus cladocalyx (Myrtaceae). Aust J Bot 48:233–245

    Article  Google Scholar 

  • Burrows GE (2002) Epicormic strand structure in Angophora, Eucalyptus and Lophostemon (Myrtaceae)—implications for fire resistance and recovery. New Phytol 153:111–131

    Article  Google Scholar 

  • Burrows GE (2013) Buds, bushfires and resprouting in the eucalypts. Aust J Bot 61:331–349

    Article  Google Scholar 

  • Burrows GE, Hornby SK, Waters DA, Bellairs SM, Prior LD, Bowman DMJS (2010) A wide diversity of epicormic structures is present in Myrtaceae species in the northern Australian savanna biome—implications for adaptation to fire. Aust J Bot 58:493–507

    Article  Google Scholar 

  • Catry FX, Moreira F, Duarte I, Acácio V (2009) Factors affecting post-fire crown regeneration in cork oak (Quercus suber L.) trees. Eur J Forest Res 128:231–240

    Article  Google Scholar 

  • Catry F, Moreira F, Cardillo E, Pausas JG (2012a) Post-fire management of cork oak forests. In: Moreira F, Arianoutsou M, Corona P, De las Heras J (eds) Post-fire management and restoration of Southern European forests. Springer, Dordrecht, pp 195–222

    Chapter  Google Scholar 

  • Catry FX, Moreira F, Pausas JG, Fernandes PM, Rego F, Cardillo E, Curt T (2012b) Cork oak vulnerability to fire: the role of bark harvesting, tree characteristics and abiotic factors. PLoS One 7:e39810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charles-Dominique T, Beckett H, Midgley GF, Bond WJ (2015) Bud protection: a key trait for species sorting in a forest-savanna mosaic. New Phytol 207:1052–1060

    Article  PubMed  Google Scholar 

  • Choczynska J, Johnson EA (2009) A soil heat and water transfer model to predict belowground grass rhizome bud death in a grass fire. J Veg Sci 20:277–287

    Article  Google Scholar 

  • Clarke PJ, Lawes MJ, Midgley JJ, Lamont BB, Ojeda F, Burrows GE, Enright NJ, Knox KJE (2013) Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol 197:19–35

    Article  CAS  PubMed  Google Scholar 

  • Colin F, Mothe F, Freyburger C, Morisset JB, Leban JM, Fontaine F (2010) Tracking rameal traces in sessile oak trunks with X-ray computer tomography: biological bases, preliminary results and perspectives. Trees Struct Funct 24:953–967

    Article  Google Scholar 

  • Colin F, Sanjines A, Fortin M, Bontemps JD, Nicolini E (2012) Fagus sylvatica trunk epicormics in relation to primary and secondary growth. Ann Bot 110:995–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehane B, Madrigal J, Hernando C, Bouhraoua R, Guijarro M (2015) New bench-scale protocols for characterizing bark flammability and fire resistance in trees: application to Algerian cork. J Fire Sci 33:202–217

    Article  Google Scholar 

  • Del Tredici P (2001) Sprouting in temperate trees: a morphological and ecological review. Bot Rev 67:121–140

    Article  Google Scholar 

  • Fernandes PM, Vega JA, Jiménez E, Rigolot E (2008) Fire resistance of European pines. For Ecol Manag 256:246–255

    Article  Google Scholar 

  • Fink S (1980) Anatomische untersuchungen über das vorkommen von spross- und wurzelanlagen im stammbereich von laub- und nadelbäumen. I. Proventive anlagen. Allgemeine Forst Jagdzeitung 151:160–180

    Google Scholar 

  • Fink S (1983) The occurrence of adventitious and preventitious buds within the bark of some temperate and tropical trees. Am J Bot 70:532–542

    Article  Google Scholar 

  • FitzJohn RG, Pennell MW, Zanne AE, Stevens PF, Tank DC, Cornwell WK (2014) How much of the world is woody? J Ecol 102:1266–1272

    Article  Google Scholar 

  • Fontaine F, Druelle JL, Clément C, Burrus M, Audran JC (1998) Ontogeny of proventitious epicormic buds in Quercus petraea. I. In the 5 years following initiation. Trees Struct Funct 13:54–62

    Google Scholar 

  • Fontaine F, Kiefer E, Clément C, Burrus M, Druelle JL (1999) Ontogeny of the proventitious epicormic buds in Quercus petraea. II. From 6 to 40 years of the tree’s life. Trees Struct Funct 14:83–90

    Google Scholar 

  • Fontaine F, Colin F, Jarret P, Druelle J-L (2001) Evolution of the epicormic potential on 17-year-old Quercus petraea trees: first results. Ann For Sci 58:583–592

    Article  Google Scholar 

  • Graves SJ, Rifai SW, Putz FE (2014) Outer bark thickness decreases more with height on stems of fire-resistant than fire-sensitive Floridian oaks (Quercus spp.; Fagaceae). Am J Bot 101:2183–2188

    Article  PubMed  Google Scholar 

  • Lawes MJ, Midgley JJ, Clarke PJ (2013) Costs and benefits of relative bark thickness in relation to fire damage: a savanna/forest contrast. J Ecol 101:517–524

    Article  Google Scholar 

  • Lev-Yadun S, Aloni R (1993) Bark structure and mode of canopy regeneration in trees of Melia azedarach L. Trees Struct Funct 7:144–147

    Article  Google Scholar 

  • Meier AR, Saunders MR, Michler CH (2012) Epicormic buds in trees: a review of bud establishment, development and dormancy release. Tree Physiol 32:565–584

    Article  PubMed  Google Scholar 

  • Michaletz ST, Johnson EA (2007) How forest fires kill trees: a review of the fundamental biophysical processes. Scand J For Res 22:500–515

    Article  Google Scholar 

  • Molinas ML, Verdaguer D (1993a) Lignotuber ontogeny in the cork-oak (Quercus suber; Fagaceae) I. Late embryo. Am J Bot 80:172–181

    Article  Google Scholar 

  • Molinas ML, Verdaguer D (1993b) Lignotuber ontogeny in the cork-oak (Quercus suber; Fagaceae) II. Germination and young seedling. Am J Bot 80:182–191

    Article  Google Scholar 

  • Moreira F, Duarte I, Catry F, Acácio V (2007) Cork extraction as a key factor determining post-fire cork oak survival in a mountain region of southern Portugal. For Ecol Manag 253:30–37

    Article  Google Scholar 

  • Moreira F, Catry F, Duarte I, Acácio V, Silva JS (2009) A conceptual model of sprouting responses in relation to fire damage: an example with cork oak (Quercus suber L.) trees in Southern Portugal. Plant Ecol 201:77–85

    Article  Google Scholar 

  • Morisset JB, Mothe F, Colin F (2012) Observation of Quercus petraea epicormics with X-ray CT reveals strong pith-to-bark correlations: silvicultural and ecological implications. For Ecol Manag 278:127–137

    Article  Google Scholar 

  • Odhiambo B, Meincken M, Seifert T (2014) The protective role of bark against fire damage: a comparative study on selected introduced and indigenous tree species in the Western Cape, South Africa. Trees Struct Funct 28:555–565

    Article  CAS  Google Scholar 

  • Oliveira G, Costa A (2012) How resilient is Quercus suber L. to cork harvesting? A review and identification of knowledge gaps. For Ecol Manag 270:257–272

    Article  Google Scholar 

  • Pascual G, Molinas M, Verdaguer D (2002) Comparative anatomical analysis of the cotyledonary region in three Mediterranean basin Quercus (Fagaceae). Am J Bot 89:383–392

    Article  PubMed  Google Scholar 

  • Pausas JG (1997) Resprouting of Quercus suber in NE Spain after fire. J Veg Sci 8:703–706

    Article  Google Scholar 

  • Pausas JG, Keeley JE (2014) Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol 204:55–65

    Article  PubMed  Google Scholar 

  • Pausas JG, Pereira JS, Aronson J (2009) The tree. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge: ecology, adaptive management, and restoration. Island Press, Washington, pp 11–21

    Google Scholar 

  • Pereira H (2007) Cork: biology, production and uses. Elsevier, Amsterdam

    Google Scholar 

  • Pereira H, Tomé M (2004) Cork oak. In: Burley J, Evans J, Youngquist JA (eds) Encyclopedia of forest sciences. Elsevier, Oxford, pp 613–620

    Chapter  Google Scholar 

  • Peter DH, Agee JK, Sprugel DG (2009) Bud damage from controlled heat treatments in Quercus garryana. Trees Struct Funct 23:381–390

    Article  Google Scholar 

  • Plumb TR (1980) Response of oaks to fire. In: Plumb TR (ed) Ecology, management, and utilization of California oaks. General technical report PSW-44. United States Department of Agriculture Forest Service, Berkeley, pp 202–215

    Google Scholar 

  • Schwilk DW, Gaetani MS, Poulos HM (2013) Oak bark allometry and fire survival strategies in the Chihuahuan Desert Sky Islands, Texas, USA. PLoS One 8:e79285

    Article  PubMed  PubMed Central  Google Scholar 

  • Şen A, Quilhó T, Pereira H (2011) Bark anatomy of Quercus cerris L. var. cerris from Turkey. Turk J Bot 35:45–55

    Google Scholar 

  • Shibata R, Shibata M, Tanaka H, Iida S, Masaki T, Hatta F, Kurokawa H, Nakashizuka T (2014) Interspecific variation in the size-dependent resprouting ability of temperate woody species and its adaptive significance. J Ecol 102:209–220

    Article  Google Scholar 

  • Silva JS, Catry F (2006) Forest fires in cork oak (Quercus suber L.) stands in Portugal. Int J Environ Stud 63:235–257

    Article  Google Scholar 

  • Smith KT, Sutherland EK (1999) Fire-scar formation and compartmentalization in oak. Can J For Res 29:166–171

    Article  Google Scholar 

  • Verdaguer D, Molinas M (1992) Anatomía y caracterización del sistema radicular del alcornoque. Scientia Gerundensis 18:39–51

    Google Scholar 

  • Verdaguer D, García-Berthou E, Pascual G, Puigderrajols P (2001) Sprouting of seedlings of three Quercus species in relation to repeated pruning and the cotyledonary node. Aust J Bot 49:67–74

    Article  Google Scholar 

  • Waters DA, Burrows GE, Harper JDI (2010) Eucalyptus regnans (Myrtaceae): a fire-sensitive eucalypt with a resprouter epicormic structure. Am J Bot 97:545–556

    Article  PubMed  Google Scholar 

  • Wesolowski A, Adams MA, Pfautsch S (2014) Insulation capacity of three bark types of temperate Eucalyptus species. For Ecol Manag 313:224–232

    Article  Google Scholar 

Download references

Acknowledgments

We thank the ground staff at Charles Sturt University and the National Arboretum, Canberra, for assistance with collecting some of the material used in the study. We thank Filipe Catry for helpful discussions regarding post-fire resprouting in cork oak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Burrows.

Ethics declarations

Conflict of interest

The authors confirm that there is no conflict of interest.

Additional information

Communicated by H. Pfanz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burrows, G.E., Chisnall, L.K. Buds buried in bark: the reason why Quercus suber (cork oak) is an excellent post-fire epicormic resprouter. Trees 30, 241–254 (2016). https://doi.org/10.1007/s00468-015-1293-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1293-1

Keywords

Navigation