Skip to main content

Advertisement

Log in

Growth partitioning within beech trees (Fagus sylvatica L.) varies in response to summer heat waves and related droughts

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Beech growth variability and climate sensitivity are much higher in the crown top than in the bole. The most notable bole–crown discrepancies occurred in response to extreme climate conditions.

Abstract

To characterize growth partitioning within the tree and its responses to climate, we studied eight dominant beech trees (Fagus sylvatica L.) of a pure, even-aged 98-year-old stand in Belgium. We sampled ten disks along the stem from breast height to treetop and examined the inter-annual patterns of, and discrepancies between, ring-area and volume increments by performing detailed stem analysis and dendroecological investigations. Although the common inter-annual variation among all increment series was high, we observed increasing growth variability and climate sensitivity with height, leading to notable bole–crown discrepancies. Both the common inter-annual variation and bole–crown discrepancies were mainly driven by summer heat waves and related droughts of the previous year, and spring droughts of the current year. Despite these discrepancies, the radial growth at breast height can be considered a good estimate of the tree volume increment but not for the purpose of focusing on climatic effects of isolated years. Extreme climatic conditions increase the risk of inaccurate estimations. The results of the present study are discussed in relation to tree ecophysiology hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ASCE-EWRI (2005) The ASCE Standardized Reference Evapotranspiration Equation. Environment and Water Resources Institute (EWRI) of the American Society of Civil Engineers (ASCE), Standardization of Reference Evapotranspiration Task Committee Final Report. http://www.kimberly.uidaho.edu/water/asceewri/ascestzdetmain2005.pdf. Accessed 01 Feb 2015

  • Barbaroux C, Bréda N, Dufrêne E (2003) Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytol 157:605–615

    Article  Google Scholar 

  • Bascietto M, Scarascia-Mugnozza G (2004) A collection of functions to determine annual tree carbon increment via stem-analysis. Ann For Sci 61:597–602

    Article  CAS  Google Scholar 

  • Becker P, Meinzer FC, Wullschleger SD (2000) Hydraulic limitation of tree height: a critique. Funct Ecol 14(1):4–11. doi:10.1046/j.1365-2435.2000.00397.x

    Article  Google Scholar 

  • Biondi F, Qeadan F (2008) Inequality in paleorecords. Ecology 89(4):1056–1067. doi:10.1890/07-0783.1

    Article  PubMed  Google Scholar 

  • Bouriaud O, Bréda N, Dupouey JL, Granier A (2005a) Is ring width a reliable proxy for stem-biomass increment? A case study in European beech. Can J For Res 35:2920–2933. doi:10.1139/x05-202

    Article  Google Scholar 

  • Bouriaud O, Leban JM, Bert D, Deleuze C (2005b) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660

    Article  CAS  PubMed  Google Scholar 

  • Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. doi:10.1016/j.dendro.2008.01.002

    Article  Google Scholar 

  • Campioli M, Verbeeck H, Van den Bossche J, Wu J, Ibrom A, D’Andrea E, Matteucci G, Samson R, Steppe K, Granier A (2013) Can decision rules simulate carbon allocation for years with contrasting and extreme weather conditions? A case study for three temperate beech forests. Ecol Model 263:42–55

    Article  CAS  Google Scholar 

  • Carnicer J, Barbeta A, Sperlich D, Coll M, Penuelas J (2013) Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front Plant Sci 4:409. doi:10.3389/fpls.2013.00409

    Article  PubMed Central  PubMed  Google Scholar 

  • Ceschia É, Damesin C, Lebaube S, Pontailler JY, Dufrêne É (2002) Spatial and seasonal variations in stem respiration of beech trees (Fagus sylvatica). Ann For Sci 59:801–812

    Article  Google Scholar 

  • Chhin S, Wang GG (2005) The effect of sampling height on dendroclimatic analysis. Dendrochronologia 23:47–55. doi:10.1016/j.dendro.2005.07.003

    Article  Google Scholar 

  • Chhin S, Hogg EH, Lieffers VJ, Huang S (2010) Growth-climate relationships vary with height along the stem in lodgepole pine. Tree Physiol 30:335–345. doi:10.1093/treephys/tpp120

    Article  PubMed  Google Scholar 

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Corona P, Romagnoli M, Torrini L (1995) Stem annual increments as ecobiological indicators in Turkey oak (Quercus cerris L.). Trees 10(1):13–19. doi:10.1007/bf00197774

    Article  Google Scholar 

  • Dagnelie P, Palm R, Rondeux J, Thill A (2013) Tables de cubage des arbres et des peuplements forestiers. Presses agronomiques de Gembloux, Gembloux

    Google Scholar 

  • DeLucia EH, Maherali H, Carey EV (2000) Climate-driven changes in biomass allocation in pines. Glob Change Biol 6:587–593

    Article  Google Scholar 

  • Drobyshev I, Övergaard R, Saygin I, Niklasson M, Hickler T, Karlsson M, Sykes MT (2010) Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. For Ecol Manag 259(11):2160–2171

    Article  Google Scholar 

  • Dyckmans J, Flessa H, Polle A, Beese F (2000) The effect of elevated [CO2] on uptake and allocation of 13C and 15N in beech (Fagus sylvatica L.) during leafing. Plant Biol 2(1):113–120

    Article  CAS  Google Scholar 

  • Gehring E, Pezzatti GB, Krebs P, Mazzoleni S, Conedera M (2015) On the applicability of the pipe model theory on the chestnut tree (Castanea sativa Mill.). Trees Struct Funct. doi:10.1007/s00468-014-1093-z

    Google Scholar 

  • Genet H, Bréda N, Dufrêne E (2009) Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak [Quercus petraea (Matt.) Liebl.] using a chronosequence approach. Tree Physiol 30:177–192

    Article  PubMed  Google Scholar 

  • Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees Struct Funct 21(1):1–11. doi:10.1007/s00468-006-0107-x

    Article  Google Scholar 

  • Hacket-Pain AJ, Friend AD, Lageard JGA, Thomas PA (2015) The influence of masting phenomenon on growth–climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. doi:10.1093/treephys/tpv007

    PubMed  Google Scholar 

  • Härdtle W, Niemeyer T, Assmann T, Baiboks S, Fichtner A, Friedrich U, Lang AC, Neuwirth B, Pfister L, Ries C, Schuldt A, Simon N, von Oheimb G (2013) Long-term trends in tree-ring width and isotope signatures (δ13C, δ15N) of Fagus sylvatica L. on soils with contrasting water supply. Ecosystems 16(8):1413–1428

    Article  Google Scholar 

  • Hoch G, Siegwolf RTW, Keel SG, Körner C, Han Q (2013) Fruit production in three masting tree species does not rely on stored carbon reserves. Oecologia 171(3):653–662

    Article  PubMed  Google Scholar 

  • Hogg EH, Brandt JP, Kochtubajda B (2005) Factors affecting interannual variation in growth of western Canadian aspen forests during 1951–2000. Can J For Res 35:610–622. doi:10.1139/x04-211

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL et al (eds) A special report of Working Groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IRM - Institut Royal Météorologique (2000) Les évènements météorologiques marquants depuis le début du 20ème siècle. http://www.meteo.be/meteo/view/fr/1078912-Evenements+marquants+depuis+1901.html. Accessed 01 Feb 2015

  • Kerhoulas LP, Kane JM (2012) Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees. Tree Physiol 32:14–23

    Article  PubMed  Google Scholar 

  • Kint V, Aertsen W, Campioli M, Vansteenkiste D, Delcloo A, Muys B (2012) Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901–2008. Clim Change 115:343–363. doi:10.1007/s10584-012-0465-x

    Article  CAS  Google Scholar 

  • Latte N, Lebourgeois F, Claessens H (2015) Increased tree-growth synchronization of beech (Fagus sylvatica L.) in response to climate change in northwestern Europe. Dendrochronologia 33:69–77. doi:10.1016/j.dendro.2015.01.002

    Article  Google Scholar 

  • Lê Cao KA, González I, Déjean S (2009) IntegrOmics: an R package to unravel relationships between two omics datasets. Bioinformatics 25:2855–2856. doi:10.1093/bioinformatics/btp515

    Article  PubMed Central  PubMed  Google Scholar 

  • Le Goff N, Granier A, Ottorini JM, Peiffer M (2004) Biomass increment and carbon balance of ash (Fraxinus excelsior) trees in an experimental stand in northeastern France. Ann For Sci 61:577–588

    Article  Google Scholar 

  • Lebaube S, Le Goff NL, Ottorini JM, Granier A (2000) Carbon balance and tree growth in a Fagus sylvatica stand. Ann For Sci 57:49–61

    Article  Google Scholar 

  • Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees Struct Funct 19:385–401

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259(4):698–709. doi:10.1016/j.foreco.2009.09.023

    Article  Google Scholar 

  • Maxime C, Hendrik D (2011) Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees Struct Funct 25:265–276

    Article  Google Scholar 

  • McLeod A, Xu C (2014) bestglm: Best Subset GLM. R package version 0.34. http://CRAN.R-project.org/package=bestglm. Accessed 01 Feb 2014

  • Mund M, Kutsch WL, Wirth C, Kahl T, Knohl A, Skomarkova MV, Schulze ED (2010) The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol 30(6):689–704

    Article  CAS  PubMed  Google Scholar 

  • Muukkonen P (2007) Generalized allometric volume and biomass equations for some tree species in Europe. Eur J For Res 126:157–166

    Article  Google Scholar 

  • Neuwirth B, Schweingruber FH, Winiger M (2007) Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 24:79–89

    Article  Google Scholar 

  • Penninckx V, Meerts P, Herbauts J, Gruber W (1999) Ring width and element concentrations in beech (Fagus sylvatica L.) from a periurban forest in central Belgium. For Ecol Manag 113:23–33

    Article  Google Scholar 

  • Rais A, van de Kuilen J-W, Pretzsch H (2014) Growth reaction patterns of tree height, diameter, and volume of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) under acute drought stress in Southern Germany. Eur J For Res 133(6):1043–1056. doi:10.1007/s10342-014-0821-7

    Article  Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Regent Instruments Canada Inc (2009). WINDENDRO for tree-ring analysis

  • Renaud V, Innes JL, Dobbertin M, Rebetez M (2011) Comparison between open-site and below-canopy climatic conditions in Switzerland for different types of forests over 10 years (1998–2007). Theor Appl Climatol 105:119–127

    Article  Google Scholar 

  • Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M (2011) Drought matters—declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. For Ecol Manag 262:947–961. doi:10.1016/j.foreco.2011.05.026

    Article  Google Scholar 

  • Schober R (1995) Ertragstafeln wichtiger Baumarten. JD Sauerländer’s Verlag, Frankfurt am Main

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment. Dendroecology. Haupt Press, Berne

    Google Scholar 

  • Skomarkova MV, Vaganov EA, Mund M, Knohl A, Linke P, Boerner A, Schulze ED (2006) Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20(5):571–586

    Article  Google Scholar 

  • Sohn JA, Kohler M, Gessler A, Bauhus J (2012) Interactions of thinning and stem height on the drought response of radial stem growth and isotopic composition of Norway spruce (Picea abies). Tree Physiol 32:1199–1213

    Article  PubMed  Google Scholar 

  • van der Maaten E (2012) Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees Struct Funct 26:777–788

    Article  Google Scholar 

  • van der Maaten-Theunissen M, Bouriaud O (2012) Climate-growth relationships at different stem heights in silver fir and Norway spruce. Can J For Res 42:958–969. doi:10.1093/jxb/err309

    Article  Google Scholar 

  • Von Arx G, Dobbertin M, Rebetez M (2012) Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agric For Meteorol 166–167:144–155

    Article  Google Scholar 

  • Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669–688

    Article  PubMed  Google Scholar 

  • Weber P, Bugmann H, Pluess AR, Walthert L, Rigling A (2013) Drought response and changing mean sensitivity of European beech close to the dry distribution limit. Trees Struct Funct 27:171–181

    Article  Google Scholar 

  • Weissen F, Bronchart L, Piret A (1994) Guide du boisement des stations forestières de Wallonie. Ministère de la Région wallonne, Namur

    Google Scholar 

  • Zang C, Biondi F (2013) Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31:68–74

    Article  Google Scholar 

  • Zianis D, Muukkonen P, Makipaa R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fenn Monogr (4):1–2, 5–63

Download references

Acknowledgments

This study was funded by the Walloon Region (Accord-Cadre de recherche et vulgarisation forestières). We would like to thank François Dewez and Philippe Louppe of the Département de la Nature et des Forêts for allowing wood sampling. We are grateful to Frédéric Henrotay and Adrien Schot (Forest Resources Management, ULg—Gembloux Agro-Bio Tech) for disk extraction, sanding, and tree-ring measurement. We also thank Yves Brostaux (Applied Statistics, Computer Science and Modeling, ULg—Gembloux Agro-Bio Tech) for his statistical support and Andrew Hacket-Pain (Fitzwilliam College, University of Cambridge) for helpful comments and corrections to the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Latte.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by T. Kajimoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latte, N., Lebourgeois, F. & Claessens, H. Growth partitioning within beech trees (Fagus sylvatica L.) varies in response to summer heat waves and related droughts. Trees 30, 189–201 (2016). https://doi.org/10.1007/s00468-015-1288-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1288-y

Keywords

Navigation