Skip to main content
Log in

Molecular cloning and expression analysis of a gene encoding KUP/HAK/KT-type potassium uptake transporter from Cryptomeria japonica

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The molecular mechanism of potassium ion transport across membranes in conifers is poorly known. We isolated and analyzed a gene encoding a potassium transporter from the conifer Cryptomeria japonica.

Abstract

Potassium ion (K+) is an essential and the most abundant intracellular cation in plants. The roles of K+ in various aspects of plant life are closely linked to its transport across biological membranes such as the plasma membrane and the tonoplast, which is mediated by membrane-bound transport proteins known as transporters and channels. Information on the molecular basis of K+ membrane transport in trees, especially in conifers, is currently limited. In this study, we isolated one complementary DNA, CjKUP1, which is homologous to known plant K+ transporters, from Cryptomeria japonica. Complementation tests using an Escherichia coli mutant, which is deficient in K+ uptake activity, was conducted to examine the K+ uptake function of the protein encoded by CjKUP1. Transformation of the K+-uptake-deficient mutant with CjKUP1 complemented the deficiency of this mutant. This result indicates that CjKUP1 has a function of K+ uptake. The expression levels of CjKUP1 in male strobili were markedly higher from late September to early October than in other periods. The expression levels in male and female strobili were higher than those in other organs such as needles, inner bark, differentiating xylem, and roots. These results indicate that CjKUP1 is mainly involved in K+ membrane transport in the cells of reproductive organs of C. japonica trees, especially in male strobili during pollen differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134:1135–1145

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2011) Root K+ acquisition in plants: the Arabidopsis thaliana model. Plant Cell Physiol 52:1603–1612

    Article  PubMed  Google Scholar 

  • Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos MA, Garciadeblas B, Cubero B, Rodríguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795

    Article  PubMed  PubMed Central  Google Scholar 

  • Bossemeyer D, Schlösser A, Bakker EP (1989) Specific cesium transport via the Escherichia coli Kup (TrkD) K+ uptake system. J Bacteriol 171:2219–2221

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Buurman ET, Kim KT, Epstein W (1995) Genetic evidence for two sequentially occupied K+ binding sites in the Kdp transport ATPase. J Biol Chem 270:6678–6685

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Davies C, Shin R, Liu W, Thomas MR, Schachtman DP (2006) Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. J Exp Bot 57:3209–3216

    Article  PubMed  CAS  Google Scholar 

  • Dünisch O, Bauch J (1994a) Influence of mineral elements on wood formation of old growth spruce (Picea abies L. Karst.). Holzforschung 48:5–14

    Article  Google Scholar 

  • Dünisch O, Bauch J (1994b) Influence of soil substrate and drought on wood formation of spruce (Picea abies L. Karst.) under controlled conditions. Holzforschung 48:447–457

    Article  Google Scholar 

  • Dünisch O, Bauch J, Müller M, Greis O (1998) Subcellular quantitative determination of K and Ca in phloem, cambium, and xylem cells of spruce (Picea abies L. Karst.) during earlywood and latewood formation. Holzforschung 52:582–588

    Article  Google Scholar 

  • Elumalai RP, Nagpal P, Reed JW (2002) A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14:119–131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Epstein W, Kim BS (1971) Potassium transport loci in Escherichia coli K-12. J Bacteriol 108:639–644

    PubMed  CAS  PubMed Central  Google Scholar 

  • Escalante-Pérez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler JP, Teichmann T, Fayyaz P, Hartung W, Polle A, Fromm J, Hedrich R, Ache P (2009) Salt stress affects xylem differentiation of grey poplar (Populus × canescens). Planta 229:299–309

    Article  PubMed  Google Scholar 

  • Fairbairn DJ, Liu W, Schachtman DP, Gomez-Gallego S, Day SR, Teasdale RD (2000) Characterisation of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis. Plant Mol Biol 43:515–525

    Article  PubMed  CAS  Google Scholar 

  • Fu HH, Luan S (1998) AtKUP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10:63–73

    PubMed  CAS  PubMed Central  Google Scholar 

  • Funada R, Kubo T, Fushitani M (1990) Early and late wood formation in Pinus densiflora trees with different amounts of crown. IAWA Bull New Series 11:281–288

    Article  Google Scholar 

  • Futamura N, Ujino-Ihara T, Nishiguchi M, Kanamori H, Yoshimura K, Sakaguchi M, Shinohara K (2006) Analysis of expressed sequence tags from Cryptomeria japonica pollen reveals novel pollen-specific transcripts. Tree Physiol 26:1517–1528

    Article  PubMed  CAS  Google Scholar 

  • Futamura N, Totoki Y, Toyoda A, Igasaki T, Nanjo T, Seki M, Sakaki Y, Mari A, Shinozaki K, Shinohara K (2008) Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genom 9:383

    Article  Google Scholar 

  • Garciadeblas B, Benito B, Rodríguez-Navarro A (2002) Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa. Plant Mol Biol 50:623–633

    Article  PubMed  CAS  Google Scholar 

  • Gierth M, Mäser P (2007) Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581:2348–2356

    Article  PubMed  CAS  Google Scholar 

  • Grabov A (2007) Plant KT/KUP/HAK potassium transporters: single family–multiple functions. Ann Bot 99:1035–1041

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gupta M, Qiu X, Wang L, Xie W, Zhang C, Xiong L, Lian X, Zhang Q (2008) KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genomics 280:437–452

    Article  PubMed  CAS  Google Scholar 

  • He C, Cui K, Duan A, Zeng Y, Zhang J (2013) Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family. Ecol Evol 2:1996–2004

    Article  Google Scholar 

  • Hosoo Y, Yoshii E, Negishi K, Taira H (2005) A histological comparison of the development of pollen and female gametophytes in fertile and sterile Cryptomeria japonica. Sex Plant Reprod 18:81–89

    Article  Google Scholar 

  • Kim EJ, Kwak JM, Uozumi N, Schroeder J (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51–62

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kuhn AJ, Schröder WH, Bauch J (1997) On the distribution and transport of mineral elements in xylem, cambium and phloem of spruce (Picea abies L. Karst.). Holzforschung 51:487–496

    Article  CAS  Google Scholar 

  • Langer K, Ache P, Geiger D, Stinzing A, Arend M, Wind C, Regan S, Fromm J, Hedrich R (2002) Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis. Plant J 32:997–1009

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM (2006) The role of monovalent cation transporters in plant responses to salinity. J Exp Bot 57:1137–1147

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London

    Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagao A, Sasaki S, Pharis RP (1989) Cryptomeria japonica. In: Halevy AH (ed) CRC handbook of flowering, vol VI. CRC Press, Boca Raton, pp 247–269

    Google Scholar 

  • Nakamura T, Katoh Y, Shimizu Y, Matsuba Y, Unemoto T (1996) Cloning and sequencing of novel genes from Vibrio alginolyticus that support the growth of K+ uptake-deficient mutant of Escherichia coli. Biochim Biophys Acta 1277:201–208

    Article  PubMed  CAS  Google Scholar 

  • Ohba K (1993) Clonal forestry with sugi (Cryptomeria japonica). In: Ahuja MR, Libby WJ (eds) Clonal forestry II, conservation and application. Springer, Berlin, pp 66–90

    Google Scholar 

  • Rigas S, Desbrosses G, Haralampidis K, Vicente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P (2001) TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13:139–151

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rodríguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30

    Article  PubMed  Google Scholar 

  • Rodríguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  PubMed  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47–60

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rubio F, Santa-Maria GE, Rodríguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109:34–43

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sato Y, Nanatani K, Hamamoto S, Shimizu M, Takahashi M, Tabuchi-Kobayashi M, Mizutani A, Schroeder JI, Souma S, Uozumi N (2014) Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K+ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter. J Biochem 155:315–323

    Article  PubMed  CAS  Google Scholar 

  • Schleyer M, Bakker EP (1993) Nucleotide sequence and 3′-end deletion studies indicate that the K+-uptake protein Kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus. J Bacteriol 175:6925–6931

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flügge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Senn ME, Rubio F, Banuelos MA, Rodríguez-Navarro A (2001) Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J Biol Chem 276:44563–44569

    Article  PubMed  CAS  Google Scholar 

  • Shabara S (2003) Regulation of potassium transport in leaves: from molecular to tissue level. Ann Bot 92:627–634

    Article  Google Scholar 

  • Stumpe S, Bakker EP (1997) Requirement of a large K+-uptake capacity and of extracytoplasmic protease activity for protamine resistance of Escherichia coli. Arch Microbiol 167:126–136

    Article  CAS  Google Scholar 

  • Su H, Golldack D, Zhao CS, Bohnert HJ (2002) The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 129:1482–1493

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sun S, Gan JH, Paynter JJ, Tucker SJ (2006) Cloning and functional characterization of a superfamily of microbial inwardly rectifying potassium channels. Physiol Genomics 26:1–7

    Article  PubMed  Google Scholar 

  • Szczerba MW, Britto DT, Kronzucker HJ (2009) K+ transport in plants: physiology and molecular biology. J Plant Physiol 166:447–466

    Article  PubMed  CAS  Google Scholar 

  • Szyroki A, Ivashikina N, Dietrich P, Roelfsema MR, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R (2001) KAT1 is not essential for stomatal opening. Proc Natl Acad Sci USA 98:2917–2921

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takahashi R, Nishio T, Ichizen N, Takano T (2007) High-affinity K+ transporter PhaHAK5 is expressed only in salt-sensitive reed plants and shows Na+ permeability under NaCl stress. Plant Cell Rep 26:1673–1679

    Article  PubMed  CAS  Google Scholar 

  • Tsumura Y, Suyama Y, Yoshimura K, Shirato N, Mukai Y (1997) Sequence-tagged-sites (STSs) of cDNA clones in Cryptomeria japonica and their evaluation as molecular markers in conifers. Theor Appl Genet 94:764–772

    Article  CAS  Google Scholar 

  • Ueuma H, Yoshii E, Hosoo Y, Taira H (2009) Cytological study of a male-sterile Cryptomeria japonica that does not release microspores from tetrads. J For Res 14:123–126

    Article  Google Scholar 

  • Ujino-Ihara T, Yoshimura K, Ugawa Y, Yoshimaru H, Nagasaka K, Tsumura Y (2000) Expression analysis of ESTs derived from the inner bark of Cryptomeria japonica. Plant Mol Biol 43:451–457

    Article  PubMed  CAS  Google Scholar 

  • Ujino-Ihara T, Taguchi Y, Yoshimura K, Tsumura Y (2003) Analysis of expressed sequence tags derived from developing seed and pollen cones of Cryptomeria japonica. Plant Biol 5:600–607

    Article  CAS  Google Scholar 

  • Ujino-Ihara T, Kanamori H, Yamane H, Taguchi Y, Namiki N, Mukai Y, Yoshimura K, Tsumura Y (2005) Comparative analysis of expressed sequence tags of conifers and angiosperms reveals sequences specifically conserved in conifers. Plant Mol Biol 59:895–907

    Article  PubMed  CAS  Google Scholar 

  • Uozumi N (2001) Escherichia coli as an expression system for K+ transport systems from plants. Am J Physiol Cell Physiol 281:C733–C739

    PubMed  CAS  Google Scholar 

  • Uozumi N, Nakamura T, Schroeder JI, Muto S (1998) Determination of transmembrane topology of an inward rectifying potassium channel from Arabidopsis thaliana based on functional expression in Escherichia coli. Proc Natl Acad Sci USA 95:9773–9778

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Very AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A (2004) Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J 40:523–535

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wind C, Arend M, Fromm J (2004) Potassium-dependent cambial growth in poplar. Plant Biol 6:30–37

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Gao Q, Sun C, Li W, Gu S, Xu C (2009) Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.). J Genet Genomics 36:161–172

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Nishiguchi M, Futamura N, Nanjo T (2007) Expressed sequence tags from Cryptomeria japonica sapwood during the drying process. Tree Physiol 27:1–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author contribution statement

Y.H. designed the study and drafted the manuscript. Y.H. and Y.K. carried out gene isolation, sequence analysis, and gene expression analysis. Y.H., K.N., and N.U. participated in complementation tests. N.U. and K.N. helped to draft the manuscript. All authors read and approved the manuscript.

Acknowledgments

This study was performed through Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology, the Japanese Government. The authors are grateful to Associate Prof. T. Shimosato for technical assistance with real-time RT-PCR.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Hosoo.

Additional information

Communicated by R. Alia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosoo, Y., Kimura, Y., Nanatani, K. et al. Molecular cloning and expression analysis of a gene encoding KUP/HAK/KT-type potassium uptake transporter from Cryptomeria japonica . Trees 28, 1527–1537 (2014). https://doi.org/10.1007/s00468-014-1059-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-1059-1

Keywords

Navigation