Skip to main content

Advertisement

Log in

Dendrochronological analysis of urban trees: climatic response and impact of drought on frequently used tree species

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Distinct species-specific differences were found in the response to temperature, precipitation and the self-calibrated Palmer Drought Severity Index that are confirmed by pointer year analyzes and superposed epoch analyzes.

Abstract

Trees in urban environments are exposed to heat stress, low air humidity and soil drought. The increasing temperatures and the more frequent heat and drought events will intensify the stress level of urban trees. We applied a dendrochronological approach to evaluate the species-specific suitability under increasing risk of drought of five tree species at highly sealed urban sites in the city of Dresden (Germany). Climate-growth correlation analyses show that temperatures and water availability from April to July in the current year and in summer and autumn of the previous year are the main determining factors for radial growth. However, distinct species-specific differences were found in the response to temperature, precipitation and the self-calibrated Palmer Drought Severity Index. During the study period, the influence of temperature and drought on radial growth during summer months increases for Acer platanoides and Acer pseudoplatanus, whereas no changes occurred for Quercus petraea, Quercus rubra, and P. × hispanica. Pointer year analysis and superposed epoch analyses revealed a species-specific response to extreme climatic events. While for A. platanoides and A. pseudoplatanus a higher number of negative pointer years and significant growth declines in drought years were found, Q. petraea and Q. rubra showed more frequent positive pointer years but no significant growth reductions during drought. Based on these response patterns we classified the studied tree species according to their suitability and drought tolerance for urban sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aranda I, Gil L, Pardos JA (2000) Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees 14:344–352

    Article  Google Scholar 

  • Armson D, Stringer P, Ennos AR (2012) The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For Urban Green 11:245–255

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26

    Article  Google Scholar 

  • Bannister P, Maegli T, Dickinson KJM, Halloy SRP, Knight A, Lord JM, Mark AF, Spencer KL (2005) Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage? Oecologia 144:245–256

    Article  PubMed  Google Scholar 

  • Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22:1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Bartens J, Grissino-Mayer HD, Day SD, Wiseman PE (2012) Evaluating the potential for dendrochronological analysis of live oak (Quercus virginiana Mill.) from the urban and rural environment—An explorative study. Dendrochron 30:15–21

    Article  Google Scholar 

  • Battipaglia G, Marzaioli F, Lubritto C, Altieri S, Strumia S, Cherubini P, Cotrufo MF (2010) Traffic pollution affects tree-ring width and isotopic composition of Pinus pinea. Sci Total Environ 408:586–593

    Article  CAS  PubMed  Google Scholar 

  • Beck W, Müller J (2006) Impact of heat and drought on tree and stand vitality—dendroecological methods and first results from level II-plots in southern Germany. Schriftenreihe aus der Forstlichen Fakultät der Universität Göttingen und der Nordwestdeutschen Forstlichen Versuchsanstalt 142:120–127

    Google Scholar 

  • Bernhofer C, Matschullat J, Bobeth A (2009) Das Klima in der REGKLAM-Modelregion Dresden. Regklam Publikationsreihe Heft 1, Rhombos, Berlin

  • Bhaduri B, Minner M, Tatalovich S, Harbor J (2001) Long-term hydrologic impact of urbanization: a tale of two models. J Water Res Plan Manag 127:13–19

    Article  Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comp Geosci 30:303–311

    Article  Google Scholar 

  • Blume H-P (2000) Böden städtisch-industrieller Verdichtungsräume. In: Blume H-P, Felix-Henningsen P, Fischer WR, Frede HG, Horn R, Stahr K (eds) Handbuch der Bodenkunde. Ecomed, Landsberg, pp 154–171

    Google Scholar 

  • Bräker OU (2002) Measuring and data processing in tree-ring research—a methodological introduction. Dendrochron 20:203–216

    Article  Google Scholar 

  • Bühler O, Nielsen CN, Kristoffersen P (2006) Growth and phenology of established Tilia cordata street trees in response to different irrigation regimes. Arboric Urban For 31:3–9

    Google Scholar 

  • Bukata AR, Kyser TK (2008) Tree-ring elemental concentrations in oak do not necessarily passively record changes in bioavailability. Sci Total Environ 390:275–286

    Article  CAS  PubMed  Google Scholar 

  • Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochron 26:115–124

    Article  Google Scholar 

  • Büntgen U, Frank DC, Schmidhalter M, Neuwirth B, Seifert M, Esper J (2006) Growth/climate response shift in a long subalpine spruce chronology. Trees 20:99–110

    Article  Google Scholar 

  • Cedro A, Nowak G (2006) Effects of climatic conditions on annual tree ring growth of the Platanus × hispanica ‘Acerifolia’ under urban conditions of Szczecin. Dendrobiology 55:11–17

    Google Scholar 

  • Chaar H, Colin F (1999) Impact of late frost on height growth in young sessile oak regenerations. Ann For Sci 56:417–429

    Article  Google Scholar 

  • Chen ZJ, He XY, Chen W, Shao XM, Sun Y, Tao DL (2006) Solar activity, global surface air temperature anomaly and Pacific Decadal Oscillation signals observed in urban outskirts tree ring records from Shenyang, China. Adv Space Res 38:2272–2284

    Article  Google Scholar 

  • Chen ZJ, He XY, Cui M, Davi N, Zhang X, Chen W, Sun Y (2008) The effect of anthropogenic activities on the reduction of urban tree sensitivity to climatic change: dendrochronological evidence from Chinese pine in Shenyang city. Trees 25:393–405

    Article  Google Scholar 

  • Ciais Ph, Reichstein M, Viovy N, Granier A, Oglee J, Allard V, Aubignet M, Buchmann N, Bernhofer Chr, Carrara A, Chevallier F, De Noblet N et al (2005) European-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Conway TM (2007) Impervious surface as an indicator of pH and specific conductance in the urbanizing coastal zone of New Jersey, USA. J Environ Manag 85:308–316

    Article  CAS  Google Scholar 

  • Cook ER, Holmes RL (1986) Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin. Chronology Series 6. In: Holmes RL, Adams RK, Fritts HC (eds) User manual for computer program ARSTAN. University of Arizona, Tucson, pp 50–57

    Google Scholar 

  • Cropper JP (1979) Tree-ring skeleton plotting by computer. Tree Ring Bull 39:47–59

    Google Scholar 

  • Demchik MC, Sharpe WE (2000) The effect of soil nutrition, soil acidity and drought on northern red oak (Quercus rubra L.) growth and nutrition on Pennsylvania sites with high and low red oak mortality. For Ecol Manag 136:199–207

    Article  Google Scholar 

  • Dongarra G, Varrica D (2002) Delta C-13 variations in tree rings as an indication of severe changes in the urban air quality. Atmos Environ 36:5887–5896

    Article  CAS  Google Scholar 

  • Dujesiefken D, Drenou Ch, Oven P, Stobbe H (2005) Arboricultural practices. In: Konijnendijk CC, Nilsson K, Randrup TB, Schipperijn J (eds) Urban forests and trees. Springer, Berlin, pp 419–441

    Chapter  Google Scholar 

  • Eckstein D, Krause C (1989) Dendrochronological studies on spruce trees to monitor environmental changes around Hamburg. IAWA Bull 10:175–182

    Article  Google Scholar 

  • Eckstein D, Breyne A, Aniol RW, Liese W (1981) Dendroklimatologische Untersuchungen zur Entwicklung von Straßenbäumen. Forstw Cbl 100:381–396

    Article  Google Scholar 

  • Frey S (2002) Bodenkundliche Untersuchung an ausgewählten Straßenbaumstandorten in Dresden. Hochschule für Technik und Wirtschaft Dresden (FH). Unpublished Master Thesis

  • Friedrichs DA, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2009) Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23:729–739

    Article  Google Scholar 

  • Fritts HC (1976) Tree-rings and climate. Academic press, London

    Google Scholar 

  • Gasson PE, Cutler DF (1990) Tree root plate morphology. Arboric J 14:193–264

    Article  Google Scholar 

  • Genet H, Bréda N, Dufrêne H (2010) Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiol 30:177–192

    Article  CAS  PubMed  Google Scholar 

  • Gillner S, Vogt J, Roloff A (2013) Climatic response and impacts of drought on oaks at urban and forest sites. Urb For Urb Green 12:597–605

  • Gregorová B, Černý K, Holub V, Strnadová V (2010) Effects of climatic factors and air pollution on damage of London plane (Platanus hispanica Mill.). Hortic Sci 37:109–117

    Google Scholar 

  • Hacke U, Sauter JJ (1996) Xylem dysfunction during winter and recovery of hydraulic conductivity in diffuse-porous and ring-porous trees. Oecologia 105:435–439

    Article  Google Scholar 

  • Hardy JP, Groffman PM, Fitzhugh RD, Henry KS, Welman AT, Demers JD, Fahey TJ, Driscoll CT, Tierney GL, Nolan S (2001) Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry 56:151–174

    Article  Google Scholar 

  • Hausendorf E (1940) Frostschäden an Eichen. Zeitschrift für Forst- und Jagdwesen 72:3–35

    Google Scholar 

  • He X, Chen Z, Chen W, Shao X, He H, Sun Y (2007) Solar activity, global surface air temperature anomaly and Pacific Decadal Oscillation recorded in urban tree rings. Ann For Sci 64:743–756

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • Holmes RL, Adams RK, Fritts HC (1986) Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin with procedures used in the chronology development work including users manuals for computer programs COFECHA and ARSTAN, Chronology Series VI. Laboratory of Tree-Ring Research, University of Arizona, Tuscon, Arizona

  • Kern Z, Popa I (2007) Climate-growth relationship of tree species from a mixed stand of Apuseni Mts, Romania. Dendrochronologia 24:109–115

    Article  Google Scholar 

  • Kint V, Aertsen W, Campioli M, Vansteenkiste D, Delcloo A, Muys B (2012) Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901–2008. Clim Change 115:343–363

    Article  CAS  Google Scholar 

  • Kirchner B (1999) Planungsrelevante Ergebnisse zum Stadtklima von Dresden sowie Erfahrungen zum Stadtklima von Dresden sowie Erfahrungen bei der Nutzung. Wiss. Mitt. Inst. Meteorol. Univ Leipzig u Inst für Troposhärenforschg Leipzig 13:126–141

    Google Scholar 

  • Konijnendijk CC (2003) A decade of urban forestry in Europe. For Policy Econ 5:173–186

    Article  Google Scholar 

  • Landeshauptstadt Dresden (ed.) (2012) Amt für Stadtgrün und Abfallwirtschaft. Straßenbaumkataster der Landeshauptstadt Dresden, Stadtentwicklung und Umwelt. [2012-10-10]

  • Lebaube S, Le Goff N, Ottorini JM, Granier A (2000) Carbon balance and tree growth in a Fagus sylvatica stand. Ann For Sci 57:49–61

    Article  Google Scholar 

  • Lebourgeois F, Cousseau G, Ducos Y (2004) Climate-tree-growth relationships of Quercus petraea Mill stand in the Forest of Bercé (Futaie des Clos, Sarthe, France). Ann For Sci 61:361–372

    Article  Google Scholar 

  • Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 19:385–401

    Article  Google Scholar 

  • Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For Ecol Manag 149:33–46

    Article  Google Scholar 

  • Leuzinger S, Vogt R, Körner C (2010) Tree surface temperature in an urban environment. Agric For Meteorol 150:56–62

    Article  Google Scholar 

  • Löbel S (2011) Die Straßenbaumartenverwendung in Dresden—Rück- und Ausblick. In: Roloff A, Thiel D, Weiss H (eds) Aktuelle Fragen der Baumpflege, Baumverwendung und Jungbaumpflege. Forstw Beitr Tharandt/Contrib For Sc Beiheft 10:112–131

  • Lough JM, Fritts HC (1987) An assessment of the possible effects of volcanic eruptions on North American climate using tree-ring data, 1602 to 1900 A.D. Clim Change 10:219–239

    Article  Google Scholar 

  • Marion L, Gričar J, Oven P (2007) Wood formation in urban Norway maple trees studied by the micro-coring method. Dendrochronologia 25:97–102

    Article  Google Scholar 

  • Martin-Benito D, Kint V, del Río M, Muys B, Cañellas I (2011) Growth responses of West-Mediterranean Pinus nigra to climate change are modulated by competition and productivity: past trends and future perspectives. For Ecol Manag 262:1030–1040

    Article  Google Scholar 

  • McPherson EG, Muchnick J (2005) Effects of street tree shade on asphalt concrete pavement performance. Arboric Urban For 31:303–310

    Google Scholar 

  • Meyer FH (ed) (1982) Bäume in der Stadt. Ulmer, Stuttgart

    Google Scholar 

  • Michelot A, Bréda N, Damesin C, Dufrêne E (2012) Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. For Ecol Manag 265:161–171

    Article  Google Scholar 

  • Mueller EC, Day TA (2005) The effect of urban ground cover on microclimate, growth and leaf gas exchange of oleander in Phoenix, Arizona. Int J Biometeorol 49:244–255

    Article  PubMed  Google Scholar 

  • Mund M, Kutsch W, Wirth C, Kahl T, Knohl A, Skomarkova M, Schulze E (2010) The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol 30:689–704

    Article  CAS  PubMed  Google Scholar 

  • Neuwirth B, Esper J, Schweingruber FH, Winiger M (2004) Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 21:69–78

    Article  Google Scholar 

  • Neuwirth B, Schweingruber FH, Winiger M (2007) Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 24:79–89

    Article  Google Scholar 

  • Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11:474–484

    Article  Google Scholar 

  • Pauleit S, Jones N, Garcia-Martin G, Garcia-Valdecantos JL, Riviere LM, Vidal-Beaudet L, Bodson M, Randrup TB (2002) Tree establishment practise in towns and cities—results from a European survey. Urban For Urban Green 1:83–96

    Article  Google Scholar 

  • Pederson N, Cook ER, Jacoby GC, Peteet DM, Griffin KL (2004) The influence of winter temperatures on the annual radial growth of six northern range margin tree species. Dendrochronologia 22:7–29

    Article  Google Scholar 

  • Petersen A, Eckstein D, Liese W (1982) Holzbiologische Untersuchungen über den Einfluss von Auftausalz auf Hamburger Strassenbäume. Forstw Cbl 101:353–365

    Article  Google Scholar 

  • Piovesan G, Adams JM (2001) Masting behaviour in beech: linking reproduction and climatic variation. Can J Bot 79:1039–1047

    Google Scholar 

  • Piovesan G, Birnabei M, Di Filippo A, Romagnoli M, Schirone B (2003) A long-term tree ring beech chronology from a high-elevation old-growth forest of Central Italy. Dendrochronologia 21:13–22

    Article  Google Scholar 

  • Rebetez M, Mayer H, Dupont O, Schnindler D, Gartner K, Kropp J, Menzel A (2006) Heat and drought 2003 in Europe: a climate synthesis. Ann For Sci 63:567–575

    Article  Google Scholar 

  • Rinn F (2003) TSAP-Win: time series analysis and presentation for dendrochronology and related applications. Version 0.55 User reference. Heidelberg, Germany (http://www.rimatech.com)

  • Rinn F (2005) TSAP reference manual

  • Roberts J, Jackson N, Smith M (2006) Tree roots in the built environment. The Stationery Office, Norwich

    Google Scholar 

  • Roloff A (1989) Kronenentwicklung und Vitalitätsbeurteilung ausgewählter Baumarten der gemäßigten Breiten. Sauerländer, Frankfurt am Main

  • Roloff A (1999) Tree vigor and branching pattern. J For Sci 45:206–216

    Google Scholar 

  • Roloff A (2013) Bäume in der Stadt. Ulmer, Stuttgart

    Google Scholar 

  • Sæbø A, Benedikz T, Randrup TB (2003) Selection of trees for urban forestry in the Nordic countries. Urban For Urban Green 2:101–114

    Article  Google Scholar 

  • Sæbø A, Zelimir B, Ducatillion C, Hatzistathis A, Lagerström T, Supuka J, Garcis-Valdecantos JL, Rego F, Slycken J (2005) The selection of plant materials for street trees, park trees and urban woodlands. In: Konijnendijk CC, Nilsson K, Randrup TB, Schipperijn J (eds) Urban forests and trees. Springer, Berlin, pp 257–280

    Chapter  Google Scholar 

  • Santini A, Bottacci A, Gellini R (1994) Preliminary dendroecological survey on pedunculate oak (Quercus robur L.) stands in Tuscany (Italy). Ann For Sci 51:1–10

    Article  Google Scholar 

  • Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M (2011) Drought matters—declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. For Ecol Manag 262:947–961

    Article  Google Scholar 

  • Schipka F (2003) Blattwasserzustand und Wasserumsatz von vier Buchenwäldern entlang eines Niederschlagsgradienten in Mitteldeutschland. Dissertation, Georg-August-Universität Göttingen

  • Schweingruber FH (1996) Tree rings and environment. Dendroecology. Birmensdorf, Swiss Federal Institute for Forest, Snow and Landscape Research. Haupt, Bern, Stuttgart, Vienna

  • Schweingruber FH (2007) Wood structure and environment. Springer, Berlin

    Google Scholar 

  • Schweingruber FH, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38

    Google Scholar 

  • Sieghardt M, Mursch-Radlgruber E, Paoletti E, Couenberg E, Dimitrakopoulus A, Rego F, Hatzistathis A, Randrup TB (2005) The abiotic urban environment: impact of urban growing conditions on urban vegetation. In: Konijnendijk CC, Nilsson K, Randrup TB, Schipperijn J (eds) Urban forests and trees. Springer, Berlin, pp 281–323

    Chapter  Google Scholar 

  • SMUL (Sächsisches Staatsministerium für Umwelt und Landwirtschaft (ed) (2008) Waldzustandsbericht 2008—Waldschadensbericht nach § 58 SächsWaldG

  • Speer JH (2001) Oak mast history from dendrochronology: A new technique demonstrated in the Southern Appalachian Region. Dissertation, University of Tennessee Knoxville

  • Stokes MA, Smiley LS (1968) An introduction to tree-ring dating. The University of Chicago Press, Chicago

    Google Scholar 

  • Swoczyna T, Kalaji MH, Pietkiewicz S, Borowski J, Zaraś-Januszkiewicz E (2010) Photosynthetic apparatus efficiency of eight tree taxa as an indicator of their tolerance to urban environments. Dendrobiology 63:65–75

    CAS  Google Scholar 

  • Tyree MT, Cochard H (1996) Summer and winter embolism in oak: impact on water relations. Ann For Sci 53:173–180

    Article  Google Scholar 

  • Tyrväinen L, Pauleit S, Seeland K, de Vries S (2005) Benefits and uses of urban forests and tress. In: Konijnendijk CC, Nilsson K, Randrup TB, Schipperijn J (eds) Urban forests and trees. Springer, Berlin, pp 81–114

    Chapter  Google Scholar 

  • van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19:2818–2834

    Article  Google Scholar 

  • von Lührte A (1991) Dendroökologische Untersuchung an Kiefern und Eichen in den stadtnahen Berliner Forsten. Landschaftsentwicklung und Umweltforschung, Schriftenreihe des Fachbereichs Landschaftsentwicklung der TU Berlin, Berlin

  • Wells N, Goddard S, Hayes MJ (2004) A self-calibrating palmer drought severity index. J Clim 17:2335–2351

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteol 23:201–213

    Article  Google Scholar 

  • Wilmking M, Myers-Smith I (2008) Changing climate sensitivity of black spruce (Picea mariana Mill.) in a peatland-forest landscape in interior Alaska. Dendrochronologia 25:167–175

    Article  Google Scholar 

Download references

Acknowledgments

We thank Erik Fritzsche for his assistance during data collection. We extend our thanks to the staff members of offices for Municipal Affairs (Amt für Stadtgrün und Abfallwirtschaft Dresden) and in particular Mr. Steffen Löbel for their administrative support, helpful information and logistic maintenance during the fieldwork. This study was realised with financial support from the Bundesministerium für Bildung und Forschung (BMBF) in the project REGKLAM (http://www.regklam.de).

Conflict of interest

Research funder: Bundesministerium für Bildung und Forschung (BMBF) Grant number: 01 LR 0802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sten Gillner.

Additional information

Communicated by E. Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillner, S., Bräuning, A. & Roloff, A. Dendrochronological analysis of urban trees: climatic response and impact of drought on frequently used tree species. Trees 28, 1079–1093 (2014). https://doi.org/10.1007/s00468-014-1019-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-1019-9

Keywords

Navigation